A Fibonacci Proof

Marcel Goh

23 June 2018

Theorem. For all $n \in \mathcal{N}$, the n-th number in the Fibonacci sequence $(1,1,2,3,5 \ldots \mathrm{fib}(n))$ is the closest integer to $\phi^{n} / \sqrt{5}$ where $\phi=(1+\sqrt{5}) / 2$

Proof. For natural numbers n, the Fibonacci sequence is defined as follows:

$$
\operatorname{fib}(n)= \begin{cases}1 & n=1,2 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & n \geq 3\end{cases}
$$

The proof consists of two parts. First we will show that fib (n) differs from $\phi^{n} / \sqrt{5}$ by $\psi^{n} / \sqrt{5}$ where $\psi=(1-\sqrt{5}) / 2$. Then we will prove that this difference is strictly less than 0.5 for all natural numbers n. Observe the following two cases:

For $\mathrm{n}=1$:

$$
\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{1}}{\sqrt{5}}-\frac{\left(\frac{1-\sqrt{5}}{2}\right)^{1}}{\sqrt{5}}=\frac{(1+\sqrt{5})-(1-\sqrt{5})}{2 \sqrt{5}}=\frac{\sqrt{5}+\sqrt{5}}{2 \sqrt{5}}=1
$$

For $\mathrm{n}=2$:

$$
\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{2}}{\sqrt{5}}-\frac{\left(\frac{1-\sqrt{5}}{2}\right)^{2}}{\sqrt{5}}=\frac{(1+2 \sqrt{5}+5)-(1-2 \sqrt{5}+5)}{4 \sqrt{5}}=\frac{2 \sqrt{5}+2 \sqrt{5}}{4 \sqrt{5}}=1
$$

So if we set $n=3$, we know the following two identities hold:

$$
\mathrm{fib}(n-1)=\frac{\phi^{n-1}-\psi^{n-1}}{\sqrt{5}} \quad \text { and } \quad \operatorname{fib}(n-2)=\frac{\phi^{n-2}-\psi^{n-2}}{\sqrt{5}}
$$

We want to show that for all $n \in \mathcal{N}, n \geq 3$, $\operatorname{fib}(n)=f i b(n-1)+f i b(n-2)$.

$$
\begin{align*}
\frac{\phi^{n}-\psi^{n}}{\sqrt{5}} & =\frac{\phi^{n-1}-\psi^{n-1}}{\sqrt{5}}+\frac{\phi^{n-2}-\psi^{n-2}}{\sqrt{5}} \\
\phi^{2} \cdot \phi^{n-2}-\psi^{2} \cdot \psi^{n-2} & =\phi \cdot \phi^{n-2}-\psi \cdot \psi^{n-2}+\phi^{n-2}-\psi^{n-2} \\
\phi^{2} \cdot \phi^{n-2}-\psi^{2} \cdot \psi^{n-2} & =(\phi+1) \phi^{n-2}-(\psi+1) \psi^{n-2} \tag{1}
\end{align*}
$$

To prove that identity (1) holds, we must equate the coefficients and prove that $\phi^{2}=\phi+1$ and $\psi^{2}=\psi+1$:

For ϕ :

$$
\begin{aligned}
\left(\frac{1+\sqrt{5}}{2}\right)^{2} & =\frac{1+\sqrt{5}}{2}+1 \\
\frac{1+2 \sqrt{5}+5}{4} & =\frac{1+\sqrt{5}}{2}+\frac{2}{2} \\
\frac{6+2 \sqrt{5}}{4} & =\frac{1+\sqrt{5}+2}{2} \\
\frac{3+\sqrt{5}}{2} & =\frac{3+\sqrt{5}}{2}
\end{aligned}
$$

For ψ :

$$
\begin{aligned}
\left(\frac{1-\sqrt{5}}{2}\right)^{2} & =\frac{1-\sqrt{5}}{2}+1 \\
\frac{1-2 \sqrt{5}+5}{4} & =\frac{1-\sqrt{5}}{2}+\frac{2}{2} \\
\frac{6-2 \sqrt{5}}{4} & =\frac{1-\sqrt{5}+2}{2} \\
\frac{3-\sqrt{5}}{2} & =\frac{3-\sqrt{5}}{2}
\end{aligned}
$$

So identity (1) holds and we have proven that fib (n) differs from $\phi^{n} / \sqrt{5}$ by $\psi^{n} / \sqrt{5}$.

Now we will show that this difference is less than 0.5 . Concretely, this means that for all $n \in \mathcal{N},\left|\phi^{n} / \sqrt{5}\right|<0.5 . \quad \psi \approx-0.618$ so if $n=1$, we have $\psi / \sqrt{5} \approx-0.276 \ldots$, the absolute value of which is less than 0.5 . And because $|\psi|<1,\left|\psi^{n+1}\right|<\left|\psi^{n}\right|$ and for all $n \in \mathcal{N},\left|\psi^{n} / \sqrt{5}\right|<0.5$.

Therefore, for all natural numbers n, $\operatorname{fib}(n)$ differs from $\phi^{n} / \sqrt{5}$ by less than 0.5 and the theorem is proved.

