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1. Introduction

ONE OF THE oldest and most studied problems in group theory began life in a 1902 paper by William
Burnside [3]. He wrote: “A still undecided point in the theory of discontinuous groups is whether the order
of a group may not be finite while the order of every operation it contains is finite.” This question is now
known as the general Burnside problem and it was solved in 1964 by E. S. Golod and I. R. Shafarevich [4],
who found an example of an infinite finitely-generated group all of whose elements have finite order.

A more specialised version of the problem, which Burnside himself tackled in his original paper, requires
that the order of every element of the group be bounded by a fixed integer n. The problem of whether such
groups are necessarily finite is called the Burnside problem and to solve it, we consider a specific class of
groups. The free Burnside group with r generators of order n, denoted B(r, n), is the group with r generators
x1, . . . , xr such that for every s ∈ B(r, n), sn = e. It can be regarded as the quotient of the free group Fr by
the normal subgroup {sn : s ∈ Fr}. Any group with r generators and all orders dividing n is the image of a
homomorphism from B(r, n), so the Burnside problem boils down to determining if B(r, n) is finite for all r
and n.

2. Small Cases

The simplest case occurs when n = 2.

Theorem A (Burnside, 1902). The order of B(r, 2) is 2r.

Proof. For every s, t ∈ B(r, 2), s2 = t2 = (st)2 = e, since every element is an involution. Then from stst = e
we can multiply by s on the left and t on the right to obtain ts = st. Thus B(r, 2) is abelian and, having r
generators as a basis, is isomorphic to (Z/2Z)r, with order 2r.

Burnside also proved that the order of B(2, 3) is 27, that B(2, 4) has order at most 212, and that
B(r, 3) is finite for all r. Using a convoluted method that spans two and a half pages, Burnside proved that
|B(r, 3)| ≤ 32

r−1, but finiteness of |B(r, 3)| can be shown more easily if we relax the bound. The following
argument was presented by Marshall Hall, Jr. in his 1959 textbook The Theory of Groups [6].

Theorem B. For r ≥ 1, the order of B(r, 3) is of the form 3m(r) for some integer m(r) ≤ 3r−1.

Proof. Because every non-identity element in B(r, 3) has order 3, the group is a 3-group and has order a
power of 3. We will perform induction on r. When r = 1, the group is cyclic and its order is 3, so setting
m(1) = 0 satisfies the inequality with equality. Now suppose that the theorem holds for some integer k; i.e.
|B(k, 3)| = 3m(k) and m(k) ≤ 3k−1. Note that for any Burnside group of exponent 3, the relation (st)3 = e
implies that

tst = s−1t−1s−1 (1)

for any s, t in the group.
We form B(k + 1, 3) by adding a new generator g to the generating set of B(k, 3). Let s ∈ B(k + 1, 3)

It can be expressed as a finite product of the form

s = s1g
±1s2g

±1 · · · g±1sn, (2)

where n is some integer and the si belong to B(k, 3). If, in this product, any two consecutive g’s have the
same sign in the exponent, we can use the identity (1) with g = t to perform the following replacements,
each reducing the total number of g±1 terms by one:

gsig = si
−1g−1si

−1 and g−1sig
−1 = si

−1gsi
−1 (3)
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In this way, s can be reexpressed in the form (2) but with the exponents of g alternating in sign.
But we can make further reductions. Since g3 = e, we have g−1 = g2 and we can perform surgery on s

as follows:
s = s1 · · · sigsi+1g

−1si+2g · · · sn
= s1 · · · sigsi+1g · gsi+2g · · · sn
= s1 · · · (sisi+1

−1)g−1(si+1
−1si+2

−1)g−1si+2
−1 · · · sn,

reducing the total instances of g±1 by one
(
the third line is due to (3)

)
. An analogous reduction can be

done when s contains a sig
−1si+1gsi+2g

−1, and in fact, in both cases we now have two consecutive matching
exponents so we can immediately apply one of the identities in (3) again. After doing this repeatedly, we find
that any s ∈ B(k + 1, 3) is of the form (2) with at most two g±1s. As a final refinement, using g = g−1g−1

we can write
s1g

−1s2gs3 = s1g
−1s2g

−1g−1s3 = (s1s2
−1)gs2

−1g−1s3,

so any s ∈ B(k + 1, 3) can be written in one of the forms

s1, s1gs2, s1g
−1s2, s1gs2g

−1s3,

where s1, s2, and s3 are in B(k, 3). There are 3m(k) possibilities for the first form, 32m(k) possibilites for
each of the second and third forms, and 33m(k) for the fourth. Thus

|B(k + 1, 3)| = 3m(k) + 2 · 32m(k) + 33m(k) < 33m(k)+1,

so m(k + 1) ≤ 3m(k) and |B(k + 1, 3)| ≤ 33
r−1

.

In 1933, F. W. Levi and B. L. van der Waerden [8] determined the exact value of the exponent to be

m(r) =

(
r

3

)
+

(
r

2

)
+ r.

3. Burnside Groups of Exponent Four

For n even just slightly larger than 2 or 3, much less is known about B(r, n). For example, the exact orders
of the groups B(r, 4) are only known for r ≤ 5. It is known, however, that B(r, 4) is finite for all r. This
result was proved by I. N. Sanov in 1940 [9], but since his paper is written in Russian, we present a treatment
due to M. Hall [6]. The proof has been reorganised for the sake of clarity. We begin with a lemma.

Lemma C. Let G be a finite group of order M , all of whose elements have orders dividing 4. Then if we
adjoin to G a new generator g /∈ G such that g2 ∈ G, the resulting group G′ = G∪⟨g⟩ is finite, when divided
by the normal subgroup {sn : s ∈ G′}.

Proof. Since g−1 = g3 and (gs)4 = e for any s ∈ G′, we have

gsg = s−1g−1s−1g−1s−1

= s−1g(g2s−1g2)gs−1;

since g2 ∈ G, we have, for any s ∈ G′,
gsg = s−1gs′gs−1 (4)

for some s′ ∈ G.
Armed with this identity, we proceed to fix some s ∈ G′, which, since g = g−1, can be expressed as

s = s1gs2g · · · gsn,

where each si ∈ G. We will say that this word “has length n” because it consists of n elements of G.
Applying (4) to some si we get

s = s1g · · · g(si−1si
−1)gsi

′g(si
−1si+1)g · · · gsn,
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and this word has not increased in length. Note that si−1 has been replaced by si−1si
−1. If some si = e,

then its two neighbouring g terms combine to form an element of G, so the length of the word decreases by
one.

Repeatedly applying (4), we can replace si−1 with si−1si
−1, then replace si−2 with si−2(si−1si

−1)−1 =
si−2sisi−1

−1, etc. So, in particular, we can replace s2 with any one of

s2, s2s3
−1, s2s4s3

−1, s2s4s5
−1s3

−1, . . . (5)

(we repeat this n − 2 times). Observe that the there is a pattern to the way new si’s appear. When i is
even, si appears to the left of si−1 and when i is odd, it appears to the right of si−1 and it is inverted. If
any one of these products is the identity, we can reduce the length of the word.

Suppose that n ≥ M + 2. Then in the list (5) of M possible replacements for s2, either one of them is
the identity or there is a repeated element, say

s2 · · · s2js2j+1
−1 · · · s3−1 = s2 · · · s2ks2k+1

−1 · · · s3−1,

where j < k. Then we can deduce that

s2j+2 · · · s2ks2k+1
−1 · · · s2j+3

−1 = e.

But it is possible, by repeated application of (4), to replace s2j+2 with this value, so we can shorten the
representation of s. This handles the case where we have s2js2j+1

−1 in the middle of the repeated term. It
is also possible to have s2js2j−1

−1 (here the odd term has smaller index), in which case we find that we can
replace s2j+1 with a word whose product is the identity.

So any word of length n ≥ M + 2 can be reduced. Thus any s ∈ G′ can be represented by a word that
contains at most M + 1 elements of G. This shows that there are only MM+1 possibilities for s, so G′ is
finite.

This lemma performs most of the hard work in the following finiteness proof.

Theorem D. For any positive integer r, B(r, 4) is finite.

Proof. For a group G we let
G∗ = G/{s4 : s ∈ G}.

The proof is by induction on r. When r = 1, the group is cyclic of order 4. Now assume that the theorem
holds for r = k, i.e. B(k, 4) is finite. We want to add a new generator g of order 4 to this group and show
that, after setting s4 = e for every s, the new group B(k + 1, 4) =

(
B(k, 4) ∪ ⟨g⟩

)∗
is finite.

Well, since g4 = (g2)
2
= e ∈ B(k, n), we can apply Lemma C to find that the groupG′ =

(
B(k, 4)∪⟨g2⟩

)∗
is finite. Now the square of g is in G′, so applying Lemma C once more, we find that B(k + 1, 4) =(
B(k + 1, 4) ∪ ⟨g⟩

)∗
=

(
G′ ∪ ⟨g⟩

)∗
is finite.

4. The Restricted Burnside Problem

After over a century of investigation, we still know surprisingly little information about the structure of
Burnside groups. Towards the middle of the 20th century, various mathematicians investigated a different,
weaker version of the Burnside problem: Fix some integer n. For every integer r, does there exist an integer
br,n such that every finite group of exponent n generated by r elements has order at most br,n?

If the statement is true for some n, then there would have to exist some largest finite group R(r, n) of
exponent n generated by r elements. Note that if B(r, n) is finite, then B(r, n) ∼= R(r, n). In 1956, Philip
Hall and Graham Higman [7] proved that R(r, 6) exists and that its order is

2a3b+(
b
2)+(

b
3), (6)

where
a = 1 + (r − 1)3r+(

r
2)+(

r
3) and b = 1 + (r − 1)2r.
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Though this result does not imply the finiteness of B(r, 6), P. Hall and Higman showed in the same paper
that B(r, 6) has a normal series

B(r, 6),⊇ M ⊇ M ′ ⊇ {e},
where M ′ is a maximal normal subgroup of order coprime to 2, M/M ′ is a 2-group, and G/M has order
coprime to 2. Marshall Hall, Jr., motivated by these results, showed in 1958 [5] that G/M is finite of exponent
3, M/M ′ is finite of exponent 2, and M ′ is of exponent 3 and thus finite by the work of Levi and van der
Waerden [8]. This proved that B(r, 6) is finite, of order given by (6).

The work of P. Hall and Higman would also eventually lead to a positive solution of the restricted
Burnside problem for all exponents. In their paper they proved the following theorem.

Theorem E (Hall-Higman). Let n be an integer whose prime decomposition is p1
k1 · · · pnkn . Then the

restricted Burnside problem holds for exponent n provided that all of the following statements hold:

i) The restricted Burnside problem holds for exponent pi
ki for all i.

ii) There are finitely many simple groups of exponent n.

iii) For any finite simple group G of exponent n, the outer automorphism group Out(G) = Aut(G)/ Inn(G)
is soluble.

The statements (ii) and (iii) were proven in the 1980s during the effort to classify all finite simple groups,
so the last hurdle was to prove the restricted Burnside problem for exponents equal to powers of primes.
The final proof was published by E. I. Zelmanov, first for odd exponents in 1990 [10], then for powers of two
in 1991 [11]. He received the Fields Medal for this work in 1994.

5. Infinite Burnside Groups

For n not equal to 2, 3, 4, or 6, it is not known whether B(r, n) is finite for all r. And as it turns out, the
answer to the original problem of whether B(r, n) is finite for all r and n is no. In 1968, S. I. Adian and P.
S. Novikov showed that B(r, n) is infinite for n odd and ≥ 4381 by means of a long combinatorial proof [1].
The result was improved to n odd, n ≥ 665 by Adian in 1975 [2].
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tozhdestva v gruppakh, (Moscow: Izdat. “Nauka”, 1975), 335 pages.

[3] William Burnside, “On an unsettled question in the theory of discontinuous groups.” Quart J. Pure and
Applied Math. 33 (1902), 230–238.

[4] Evgenii Solomonovich Golod and Igor Rostislavovich Shafarevich, “O vaxne pole$i klassov = O
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Bërnsăıda dl�ıa pokazatel�ıa 4,” Leningrad State Univ. Ann 10 (1940), 166–170.

[10] Efim Isaakovich Zelmanov, “Rexenie oslablenno$i problemy Bernsa$ida dl� grupp neqetnogo
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