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A generating function is a clothesline

on which we hang up a sequence for display.

— HERBERT S. WILF, generatingfunctionology (1989)

1. Introduction

When counting discrete structures, we often run into sequences that are recursively defined. For example,
suppose we have the recurrence

Rn =

{

1, if n = 0;
2Rn−1 + 3, if n ≥ 1.

We might want to know how the sequence (Rn) grows as n gets large. Now, this particular recurrence is
easy enough to solve by the substitution method. But often, it is easier to work with the generating function

of a sequence. For a sequence (An), this is the formal power series

A(z) =
∑

n≥0

Anz
n.

H. S. Wilf famously described a generating function as a clothesline, and that is exactly how we should treat
the function A(z) for now; in later sections, we will discuss how this series can be treated as an analytic
object.

Let us try to find the generating function for the sequence (Rn) defined above. Right off the bat, we
have

R(z) =
∑

n≥0

Rnz
n = R0 +

∑

n≥1

Rnz
n.

Plugging in the recursive definition of Rn, we get

R(z) = 1 +
∑

n≥1

(2Rn−1 + 3)zn

= 1 + 2
∑

n≥1

Rn−1z
n + 3

∑

n≥1

zn

= 1 + 2z
∑

n≥0

Rnz
n + 3

(

∑

n≥0

zn − 1
)

()

The first summation on the right-hand side is R(z) and the second one is well-known, so we derive the
generating function

R(z) = 1 + 2zR(z) + 3

(

1

1− z
− 1

)

(1 − 2z)R(z) =
1 + 2z

1− z

R(z) =
1 + 2z

(1− z)(1− 2z)
.
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Here we can use the partial fraction expansion to get

R(z) =
1 + 2z

(1− z)(1− 2z)
=

4

1− 2z
− 3

1− z

= 4
∑

n≥0

(2z)n − 3
∑

n≥0

zn

=
∑

n≥0

(2n+2 − 3)zn,

()

implying that Rn = 2n+2−3. This could have been found by easier methods, but this example demonstrates
how the generating function of a sequence provides a bridge from the recurrence to a closed form. In later
sections, we will see that if we only want asymptotic estimates, then we can actually stop at the generating
function equation found in ().

2. The Symbolic Method and Ordinary Generating Functions

Deriving generating functions is a rather drawn-out process, and it would not be very enjoyable to have
to work from scratch every time. Luckily, generating functions are often made up of simpler ones, so we
can use the symbolic method to arrive directly at a generating function equation. This is the subject of the
monolithic textbook Analytic Combinatorics, by P. Flajolet and R. Sedgewick. In these notes, we will often
skip some details and proofs; anything we gloss over here can certainly be found somewhere in Analytic
Combinatorics. We will refer to this book from time to time and abbreviate it by ‘AC’.

We define a combinatorial class A to be a countable set with a size function | · | : A → N0 for which the
number of elements of any given size is finite. Here are examples of combinatorial classes:

i) The set of all strings of 0 and 1, with size given by string length.

ii) The set of all permutations. A permutation of size n is a one-to-one correspondence

iii) The set of all binary trees, with size given by the number of nodes. from [1 . . n] to itself.

Ordinary generating functions. The ordinary generating function, or OGF, of a combinatorial class A
is defined to be the formal power series

A(z) =
∑

a∈A

z|a| =
∑

n≥0

Anz
n,

where An is the number of elements in A of size n. It is easy to see that the two summations are equivalent
characterisations of A(z), and An = [zn]A(z) is the coefficient of zn in A(z). We now define the neutral class
E containing only one element, of size 0. Thus the generating function of E is 1. Likewise, we define the
atomic class Z, which contains a single element of size 1. The generating function of Z is z.

When classes A and B are disjoint, we will denote their union by

A+ B = A ∪ B.

It is easy to see that the generating function of A + B is A(z) + B(z). In a similar vein, let the product of
two combinatorial classes be given by

A× B = {(a, b) : a ∈ A, b ∈ B};

the generating function of A× B is A(z) · B(z). We will denote the product of n copies of A by An (this is
E if n = 0), which has the generating function A(z)n.

A more complex construction is the sequence class. For a class A, this is

Seq(A) = E +A+ (A×A) + (A×A×A) + · · ·
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It follows that the generating function of Seq(A) is

S(z) = 1 +A(z) +A(z)2 +A(z)3 + · · · = 1

1−A(z)
.

More generally, if Ω is a subset of N0, we define SeqΩ(A) as the class
∑

n∈ΩAn, with generating function
∑

n∈ΩA(z)n. A list of further constructions can be found in Fig. I.18 of AC.

Integers and compositions. The set of all positive integers is a combinatorial class. To get its generating
function, we note that the positive integers can be associated with nonempty sequences of unlabelled atoms:

{1, 2, 3, . . .} ∼= {•, • •, • • •, . . .}

This gives the construction I = Seq≥1(Z), which immediately tells us that I(z) = z/(1− z) and In = 1 for
all n ≥ 1.

A composition of an integer n is expression of n as a sum of a sequence of positive integers (so the order
of the terms matters). For example, there are four compositions of the number 3:

1 + 1 + 1 1 + 2 2 + 1 3 ()

Let C be the set of all integer compositions. We can describe a composition as a sequence of integers, so

C = Seq(I).

From this, we find that

C(z) =
1

1− z/(1− z)
=

1− z

1− 2z
. ()

Reexpressing this as the series

C(z) =
1

1− 2z
− z

1− 2z
=

∑

n≥0

(2z)n −
∑

n≥0

2nzn+1 = 1 +
∑

n≥1

2n−1zn,

we find that C0 = 1 and Cn = 2n−1 for n ≥ 1. Ignoring C0, this makes sense because there is a one-to-one
correspondence between compositions and a subset of n− 1 possible bars between n balls: the compositions
in () correspond to

• | • | • • | • • • • | • • • • .

Fibonacci numbers. Let I∗ denote the cute combinatorial class {1, 2}, which clearly has the generating
function I∗(z) = z+ z2. Let T be the set of partitions using only the numbers 1 and 2 (for simplicity’s sake,
we also include the neutral object, i.e. T0 = 1). We have

1 = 1,

2 = 1 + 1 = 2,

3 = 1 + 1 + 1 = 1 + 2 = 2 + 1,

4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2,

and so on. After computing a few more terms, we notice the pattern

(Tn)n≥0 = (1, 1, 2, 3, 5, 8, 13, . . .).

This is almost the infamous Fibonacci sequence; we have Tn = Fn+1. Hence T (z) must be the generating
function of the Fibonacci numbers, divided by z. We can easily derive this function with the symbolic
method, since a composition using only 1s and 2s is simply a sequence of elements of I∗. We conclude that

T = Seq(I∗) and T (z) =
1

1− I∗(z)
=

1

1− z − z2
, ()

3



and the generating function of the Fibonacci numbers is

F (z) =
z

1− z − z2
. ()

“What’s one and one and one and one and one

and one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted.

— LEWIS CARROLL, Through the Looking Glass (1871)

Catalan numbers. Let B be the class of all binary trees. This combinatorial class can be described
recursively as follows: “A binary tree is either empty, or else it consists of a root node adjoined to two more
binary trees.”. An empty binary tree has size 0, so it is represented by E and a node has size 1, so we
represent it by Z. We arrive at the symbolic description

B = E + Z × B × B,

whence we derive a functional equation
B(z) = 1 + zB(z)2

that the generating function must satisfy. Treating B(z) as a variable and employing the quadratic formula,
we find that

B(z) =
1−

√
1− 4z

2z
. ()

(Since we know that B(0) = B0 = 1, the positive branch of the square root is invalid. On the other hand,
l’Hospital’s rule can be applied to the negative version to get a limit of 1.) From here, one could use Newton’s
generalisation of the binomial theorem to get that

Bn =
1

n+ 1

(

2n

n

)

, ()

and indeed, B(z) is the generating function of the Catalan numbers. From here, Stirling’s approximation
can be applied to give asymptotics, but the techniques of later sections will allow us to characterise the
asymptotic growth directly from the generating function ().

Making change. Suppose a cashier has exactly five loonies, three toonies, and four $5 bills in her till. How
many ways can she give $23 in change? To solve this, we assign each coin/bill a size proportional to its
value; so a loonie is described by Z, a toonie by Z2, and a $5 bill by Z5. Now we can describe the set of all
possiblities with the combinatorial class

M = Seq≤5(Z)× Seq≤3(Z2)× Seq≤4(Z5).

This immediately gives the generating function

M(z) = (1 + z + z2 + z3 + z4 + z5)(1 + z2 + z4 + z6)(1 + z5 + z10 + z15 + z20),

and the number of ways to make $23 is exactly [z23]M(z). Note that if the cashier had an unlimited supply
of coins and bills, we would have

M∗ = Seq(Z)× Seq(Z2)× Seq(Z5).

and the number of ways to make n dollars out of these denominations is

[zn]

(

1

1− z

)(

1

1− z2

)(

1

1− z5

)

.
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The change-making problem was used as a primary example in G. Pólya’s 1956 paper on the applications of
generating functions.

3. Labelled Structures and Exponential Generating Functions

Ordinary generating functions deal with atoms that are unlabelled, meaning these atoms are indistinguishable
from one another. When we want to count labelled objects, we will use an exponential generating function,
or EGF. For a combinatorial class A, this is the formal power series

A(z) =
∑

a∈A

z|a|

|a|! =
∑

n≥0

An
zn

n!
.

In particular, An = [zn/n!]A(z) for any EGF A(z).
The symbolic method applies to EGFs as well. As before, E denotes the neutral class, with a single

object of size 0 and Z denotes the atomic class, with a single labelled object of size 1. If A and B are disjoint
combinatorial classes with EGFs A(z) and B(z), then the EGF of their union A+B is A(z)+B(z). Instead
of an ordinary Cartesian product, we have the notion of a labelled product, in which atoms are relabelled
in all consistent ways. For example, a valid relabelling of the labelled triple (1, 3, 2) is (2, 7, 5), because the
relative ordering of the atoms is unchanged. The set of all labelled pairs of elements from A and B is denoted
A ⋆ B and its EGF is A(z) · B(z).

The labelled sequence class Seq(A), consists of sequences of elements of A. It has the EGF 1/(1−A(z)),
just as with the OGF, but notice that the EGF counts a lot more things. The easiest way to see this is to
consider the generating function of Seq(Z), which is S(z) = 1/(1− z). When considered as an OGF, there
is only one element of each given size, since [zn]S(z) = 1 for all n. But when taken as an EGF, we find
that there are n! objects of size n, because we have [zn/n!]S(z) = n! for all n. Of course, this makes sense
since permuting the atoms in a sequence of length n creates a new labelled object, but does not change the
unlabelled one.

There are two more constructions that will be useful to define on labelled classes. First, we let Setk(A)
denote the class of all sets of size k with elements in A. This is like a sequence of length k, except that
the order is not important, meaning we can divide by a factor of k!. The generating function of Setk(A) is
therefore A(z)k/k!. Now we let

Set(A) = E +A+ Set2(A) + Set3(A) + · · ·
and derive the generating function for Set(A):

T (z) =
∑

k≥0

A(z)k

k!
= eA(z) ()

The last construction we will handle is the class of k-cycles with elements in A, denoted Cyck(A). There
are k ways to represent a cycle as a sequence of k objects, so the generating function of Cyck(A) is A(z)/k.
Now we define the class of unrestricted cycles

Cyc(A) = Cyc1(A) +Cyc2(A) +Cyc3(A) + · · ·
and find that the generating function of Cyc(A) is

U(z) =
∑

k≥1

A(z)k

k
= log

1

1−A(z)
. ()

There are many other interesting EGF constructions; see, for example, Fig. II.18 in AC.
Note that a permutation is simply a set of cycles:

Seq(Z) = Set(Cyc(Z))

Of course, the cycle decomposition of a permutation is well-known, but generating functions give us another
way of seeing that this is true, since

1

1− z
= exp

(

log
1

1− z

)

.

Now is as good a time as any to state, without proof, an important classic theorem that will be used in
the next example.
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Theorem L (Lagrange inversion theorem). If a generating function g(z) satisfies the equation z = f(g(z)),
with f(0) = 0 and f ′(0) 6= 0, then for an arbitrary function H(u), we have

[zn]H(g(z)) =
1

n
[un−1]H ′(u)

(

u

f(u)

)n

.

In particular, for H(u) = u we have

[zn]g(z) =
1

n
[un−1]

(

u

f(u)

)n

.

(This particular form of of Lagrange’s inversion theorem is often called the Bürmann form.)

Cayley trees. We are now equipped to count rooted non-plane labelled trees, sometimes called Cayley
trees. Children of a given node are not ordered and nodes in these trees have unrestricted degree, so we have
the specification

T = Z ⋆ Set(T ).

This immediately gives the functional equation

T (z) = zeT (z)

and by Lagrange’s inversion theorem, with f(u) = u/eu and H(u) = u, we obtain

n![zn]T (z) = n!

(

1

n
[un−1]eun

)

= n! · 1
n
· nn−1

(n− 1)!
= nn−1. ()

Note that there are nn−2 unrooted Cayley trees, since there are n choices for the root. This is called Cayley’s
formula and the standard combinatorial proof involves establishing a bijection with Prüfer sequences; see
Prüfer (1918).

Derangements. A derangement is a permutation in which no element is fixed. This can equally be char-
acterised as a permutation with no cycle of length 1. We saw earlier that permutations is simply a set of
cycles, so disallowing cycles of length 1 gives the specification

D = Set(Cyc≥1(Z)).

We remove singleton cycles from the generating function by simply subtracting the generating function of
Cyc1(Z) (which is simply z, because a singleton cycle is just an atom) from Cyc( Z), so

D(z) = exp

(

log
1

1− z
− z

)

=
e−z

1− z
. ()

We will revisit this generating function in the context of a word problem once we have the tools to analyse
its asymptotics.

4. Counting Parameters with Bivariate Generating Functions

Some situations may require us to do more than just count the number of objects of a certain size. In addition,
we might like to know how many of a certain substructure is embedded in an object of a combinatorial class.
We can use a bivariate generating function or BGF to accomplish this. (BGFs are part of a larger class of
multivariate generating functions, but we will keep things simple in this crash course. See Chapter III of AC
for many more constructions.)

Consider a two-dimensional array of numbers (an,k), where n counts the number of objects of a certain
size and k counts some other combinatorial parameter. For example, we might have

i) The number of n-bit strings of 0s and 1s that have exactly k 0s.
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ii) The number of n-letter permutations that have exactly k cycles.

iii) The number of binary trees of size n that have k leaves.

Symbolically, suppose we have a combinatorial class A with an extra scalar parameter χ : A → N0.
The ordinary and exponential BGFs are defined, respectively, to be the power series

∑

a∈A

z|a|uχ(a) and
∑

a∈A

z|a|

n!
uχ(a),

which can be rewritten as
∑

n,k

an,kz
nuk and

∑

n,k

an,k
zn

n!
uk,

where an,k is the number of objects of size a with χ(a) = k. Note that substituting u = 1 into a BGF returns
the ordinary counting sequence for the class A.

Bitstrings. To warm up, we will consider a very simple example. Let B be the class of all binary strings,
where for b ∈ B, its size n is given by its length and χ(b) is the number of zeroes in the string. There are
two distinguishable atoms, Z0 and Z1, but we introduce a u only when a zero is present, so we have the
specification

B = Seq(uZ0 + Z1)

with generating function

B(z, u) =
1

1− (u+ 1)z
. ()

When we substitute u = 1, we get

B(z, 1) =
1

1− 2z
,

which is the generating function of 2n, the number of binary strings with n bits. The number of n-bit binary
strings with k zeroes can now be extracted. It is equal to

[uk][zn]B(z, u) = [uk](u+ 1)n =

(

n

k

)

,

by an application of the binomial theorem. Hence the probability that an n-bit binary string has k zeroes is

[uk][zn]B(z, u)

[zn]B(z, 1)
=

(

n
k

)

2n
. ()

Probabilities and moments. The above example has an elementary result, but it illustrates how BGFs
allow us to extract probabilities. For all a in a class A, we have

P{χ(a) = k | |a| = n} =
[uk][zn]A(z, u)

[zn]A(z, 1)
. ()

We can also calculate higher moments with the BGF. Notice that if we take the partial derivative with
respect to u, the χ values of each term pop down into the coefficient of each term:

∂

∂u
A(z, u) =

∂

∂u

∑

a∈A

z|a|uχ(a) =
∑

a∈A

χ(a)z|a|uχ(a)−1

Of course, the exponents of the variable u have changed, but letting Au(z, u) denote the partial derivative
with respect to u and evaluating at u = 1, we get the cumulated cost

Au(z, u)|u=1 =
∑

n≥0

(

∑

a∈An

χ(a)
)

zn, ()
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whence we can calculate the mean over An, the class of all a ∈ A of size n, to be

EAn
{χ} =

[zn]Au(z, u)
∣

∣

u=1

[zn]A(z, 1)
. ()

These formulas are valid even when the generating functions are exponential, because the n! factors cancel
out. More generally, by taking repeated derivatives, we can calculate factorial moments of χ. Let Ar

u(z, u)
denote the rth partial derivative of A with respect to u. We have

EAn
{χ(χ− 1) · · · (χ− r + 1)} =

[zn]Ar
u(z, u)

∣

∣

u=1

[zn]A(z, 1)
. ()

For example, by linearity of expectation, the second moment is easily seen to be

EAn
{χ2} = EAn

{χ+ χ(χ− 1)}
= EAn

{χ}+EAn
{χ(χ− 1)}

=
[zn]Au(z, u)

∣

∣

u=1

[zn]A(z, 1)
+

[zn]A2
u(z, u)

∣

∣

u=1

[zn]A(z, 1)

. ()

This can be easily used to calculate the variance and standard deviation of χ, from the usual formula

VAn
{χ} = σ(χ)2 = EAn

{χ2} −EAn
{χ}2. ()

Cycles in a permutation. Recall that a permutation is a set of cycles. If we mark every cycle with a u,
we get the specification

P = Set(uCyc(Z)),

which gives the bivariate exponential generating function

P (z, u) = exp

(

u log
1

1− z

)

= exp

(

log
1

(1 − z)u

)

=

(

1

1− z

)u

()

for the number of n-letter permutations with exactly k cycles. We can calculate the partial derivatives

Pu(z, u) =

(

1

1− z

)u

log
1

1− z

Here the random variable χ counts the number of cycles, and we have

EPn
{χ} =

[zn]Pu(z, u)
∣

∣

u=1

[zn]P (z, 1)
= 1 +

1

2
+ · · ·+ 1

n
= Hn. ()

The harmonic numbers Hn can be expanded as logn+ γ +O(1/n), so we find that there are roughly logn
cycles in a random permutation on n letters. A slightly harder analysis of Taylor coefficients retrives the
second moment. From this, it can be shown that VPn

{χ} ∼ logn an well.

External nodes in a binary tree. Hidden inside the specification for binary trees, we can see that we
are actually only counting internal nodes, since we have given E , the external node, the generating function
of 1 (meaning it has size 0). If we mark it with a u, we arrive at

B = uE + Z × B × B ()

and the bivariate ordinary generating function satisfies

B(z, u) = u+ zB(z)2.
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Using the quadratic formula once again, we find that the generating function is

B(z, u) =
1−

√
1− 4uz

2z
, ()

which checks out, since setting u = 1 gives exactly (). We have the partial derivatives

Pu(z, u) =
1√

1− 4uz
and P 2

u (z, u) =
2z

(1− 4uz)3/2
. ()

With the substitution u = 1, these are both relatively well-known generating functions. The first is the gen-
erating function for the central binomial coefficients

(

2n
n

)

and the second is z ∂
∂zPu(z, 1), so it has coefficients

n
(

2n
n

)

(the powers of n drop down into the coefficient when differentiating, and multiplying by z restores
the correct power). We calculated in () that the total number of binary trees with n internal nodes is
(

2n
n

)

/(n+ 1), so applying our method gives us

EBn
{χ} =

(

2n
n

)

1
n+1

(

2n
n

) = n+ 1 ()

and

EBn
{χ2} =

n
(

2n
n

)

1
n+1

(

2n
n

) + n+ 1 = n(n+ 1) + n+ 1 = (n+ 1)2.

So the average number of external nodes in a tree with n internal nodes is n+ 1 and since

VBn
{χ} = EBn

{χ2} −EBn
{χ}2 = (n+ 1)2 − (n+ 1)2 = 0, ()

we discover that, in fact, every tree with n internal nodes has exactly n + 1 external nodes. (We have
performed what is probably the most convoluted proof of this simple fact, but it is a good exercise in
calculating moments using bivariate generating functions.)

And if I should live to be

The last leaf upon the tree

— OLIVER WENDELL HOLMES, The Last Leaf (1831)

*5. Rudiments of Complex Analysis

In this section, we will collect definitions and theorems that will be useful in studying the coefficient asymp-
totics of generating functions. We will state results without proof; the details can be found any introductory
textbook on complex analysis (e.g., Flanigan (1983)). Readers who are familiar with complex numbers may
choose to skim or skip this section.

The complex plane C is the set of all numbers x+ iy were x and y are real numbers and i is the square
root of −1. If z = x + iy, then the real part of z is ℜz = x and the imaginary part of z is ℑz = y. The
complex conjugate of z = x+ iy is x− iy, and it is easily verified, from the identity i2 = −1, that

z · z̄ = x2 + y2.

Letting |z| =
√

x2 + y2 denote the modulus of z, we find that

z · z̄
|z|2 = 1,

making it clear that the inverse 1/z of a complex number z is equal to z̄/|z|2.
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For real θ, we have the well-known formula

eiθ = cos θ + i sin θ, ()

which gives another way to represent a complex number. The complex number z = x+iy can also be written
as |z|eiθ, where θ is the angle that z makes with the positive real axis. Note that eiθ = ei(θ+2πk) for any
integer k.

The imaginary relish is so sweet

That it enchants my sense.

— WILLIAM SHAKESPEARE, Twelfth Night (1602)

Complex differentation. A complex function defined on a domain D is said to be analytic at a point
z0 ∈ D if for some open ball Ω centred at z0, f is representable as a power series

f(z) =
∑

n≥0

fn(z − z0)
n.

For example, 1/(1− z) is analytic for at any z0 in the ball of radius 1 about the origin. A complex function
whose domain is D is called differentiable or holomorphic at z0 ∈ D if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists, in the sense that f ′(z0) has the same value regardless of the manner in which z approaches z0 in the
complex plane. The following theorem says that these two notions are equivalent.

Theorem E (Basic Equivalence Theorem). A complex function f defined on a domain D is analytic at a
point z0 ∈ D if and only if it is differentiable at z0.

It is a useful fact that if a function is differentiable at z0, then its derivative is also differentiable at z0,
meaning that it admits derivatives of all orders, and we have the expansion

f(z) =
∑

n≥0

f (n)

n!
(z − z0)

n. ()

Of course, if a function is analytic in a disc around z0, then we can differentiate it by taking derivatives of
the terms in its power series.

Complex integration. The Fundamental Theorem of Calculus states that for a real-valued function f
with antiderivative F ,

∫ b

a

f(x) dx = F (b)− F (a). ()

We can think of this as summing the values of f over a path from a to b. Since R is one-dimensional, there
is only one way to get from a to b, but on the complex plane, we can integrate over any path γ from z0 ∈ C

to z1 ∈ C. We have the following complex analogue of the Fundamental Theorem of Calculus.

Theorem P (Path integration). Let f a complex function, continuous in a domain D, and let F be a
complex function, analytic in D, that satisfies F ′(z) = f(z) for all z ∈ D. If γ is any piecewise smooth path
from z0 ∈ D to z1 ∈ D, then

∫

γ

f(z) dz = F (z1)− F (z0).

We can evaluate complex integrals over paths by parametrising the curve γ as a function of a real
variable t and then performing a change of variables. If γ(t) is a parametrised curve and t ranges from a to
b, then

∫

γ

f(z) dz =

∫ b

a

f
(

γ(t)
)

γ′(t) dt. ()
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As an example, if f(z) = z2 and we want to find the integral of f from z0 = 0 to z1 = 1 + 2i. We can
walk from 0 to 1 + 2i via a path γ1 that goes from 0 to 2i and then another path γ2 that goes from 2i to
1+ 2i. So γ1(t) = it for 0 ≤ t ≤ 2 and γ2(t) = 2i+ t for 0 ≤ t ≤ 1 and we have the derivatives γ1

′(t) = i and
γ2

′(t) = 1. Putting this all together, the integral over the whole path is

∫

γ

z2dz =

∫ 2

0

(it)2 · i dt+
∫ 1

0

(2i+ t)2 dt

=

∫ 2

0

−it2 dt+

∫ 1

0

t2 + 4it− 4 dt

=

[

− it3

3

]2

t=0

+

[

t3

3
+ 2it2 − 4t

]1

t=0

= −8i

3
+

1

3
+ 2i− 4

= −11

3
− 2i

3

()

Of course, in this example, we could have just noticed that the antiderivative of f(z) = z2 is F (z) = z3/3
and applied Theorem P to get

∫

γ

f(z) dz = F (1 + 2i)− F (0) =
(1 + 2i)3

3
= −11

3
− 2i

3
. ()

When γ is a closed Jordan curve, i.e. it starts and ends at the same point and does not cross itself, we
often write the integral sign with a circle around it. The rules of integration are the same; the circle is just
there to remind us that our path goes around in a loop. Integrals over closed curves are important, because
of the following theorem.

Theorem I (Cauchy Integral Theorem). Let γ be a closed Jordan curve in a domain D. Suppose f is a
function that is analytic both on γ and the interior of γ. Then

∮

γ

f(z) dz = 0.

A corollary of Theorem I is that if γ1 is a closed curve that is fully contained in the interior of another
closed curve γ2 and f is analytic on both curves as well as the region between the two curves, then

∮

γ1

f(z) dz =

∮

γ2

f(z) dz. ()

Singularities. If functions tended to be analytic everywhere on C, then Theorem I tells us that integration
wouldn’t be very interesting. Luckily for us, most of the functions we study will fail to be analytic at certain
points. Let D be a domain and let z0 ∈ D be an interior point. If f is not analytic at z0 but it is analytic
on D \ {z0}, then the point z0 is said to be a singularity of f . There are three types of singularities:

i) If limz→z0 f(z) = w0 for some finite value w0, then it is possible to continuously extend f to an analytic
function g on all of D (just set g(z0) = w0). In this case, z0 is called a removable singularity.

ii) If limz→z0 |f(z)| = ∞, then z0 is called a pole of f .

iii) If neither (i) nor (ii) hold, then z0 is called an essential singularity of f .

We will now show that each of these types of singularities actually pop up in the wild with some
examples.

First, we can create a function with a removable singularity by taking a bona fide analytic function f
and consider its restriction f ′ on the domain D \ {z0}. Now z0 is a removable singularity of the function f ′,
since f ′ can be continuously extended to an analytic function on all of D.

11



An easy example of a function with a pole is f(z) = 1/z. This function is analytic everywhere on C

except at z0 = 0, and limz→z0 |1/z| = ∞. This tells us that f(z) may have an interesting integral around
the origin. It does not matter which closed curve we take around 0, so the unit circle C is a tempting choice.
We can parametrise C by γ(θ) = eiθ for 0 ≤ θ < 2π, which has the derivative γ′(θ) = ieiθ. We now find that

∮

C

1

z
dz =

∫ 2π

0

e−iθieiθ dθ = i

∫ 2π

0

1 dθ = 2πi. ()

This integral crops up a lot in complex analysis; commit it to memory!
A function with an essential singularity is the square root function

√
z. This is because, given z = reiθ ,

we can rewrite z = reiθ+2πik for any integer k, so for any integer k, w =
√
reiθ/2+πik satisfies the property

that w2 = z. To get a well-defined square root function, we set
√
z =

√
reiθ/2, ()

where θ ∈ (−π, π]. This spells big trouble for complex numbers on the negative real axis. For example, let

z = −1 = eiπ . Note that
√
ei(π−ǫ) = ei(π/2−ǫ/2) and

√
e−i(π−ǫ) = e−i(π/2−ǫ/2) (so both angles are in the

range (−π, π]. As ǫ → 0, the arguments to the function both get arbitrarily close to −1 but the outputs
have different limits (i and −i). So the square root function has an infinite number of essential singularities
(any negative real number); these are often called algebraic singularities.

Another function with essential singularities is the natural logarithm log z. Note that, given z = reiθ ,
the number w = log r + 2kπiθ satisfies ew = z for any integer k. Once again, to get a well-defined function
we must restrict θ to a single loop around the unit circle:

log z = log r + iθ, ()

where θ ∈ (−π, π]. Now, just as with the square root, we have a discontinuity in the argument for all real
numbers > 1. These are the logarithmic singularities.

Residues. If we allow a power series expansion around a point z0 to have a finite number of negative powers,
then it is called a Laurent series; this has the form

f(z) =
∑

n≥−M

fn(z − z0)
n =

f−M

(z − z0)M
+ · · ·+ f−1

(z − z0)
+ f0 + f1(z − z0) + f2(z − z0)

2 + · · · ,

for some nonnegative integer M . Note that, integrating on a circle of radius 1 around z0, we can make the
substitution z − z0 = eiθ to get dz = ieiθ dθ and

∮

(z − z0)
M dz = i

∫ 2π

0

ei(M+1)θ dθ =
{

2πi if M = −1;
0 otherwise.

()

So the coefficient f−1 of (z − z0)
−1 is special; it is the only term that survives the integration of a Laurent

series. We call this the residue of f at z0 and denote it by Res(f, z0); we have

Res(f, z0) =
1

2πi

∮

f(z) dz. ()

This is the crucial fact that will allows the following theorem to extract coefficients of generating functions.

Theorem C (Cauchy coefficient formula). Let f(z) be analytic. The coefficient of zn is given by the
formula

[zn]f(z) =
1

2πi

∮

f(z)

zn+1
dz, ()

where the integral is taken on any closed curve about the origin.

6. Generating Functions as Analytic Functions

This section represents a turning point in our study of generating functions. Up until now, we have treated
generating functions as purely formal objects. However, we can get a lot of information about the asymptotic
behaviour of a power series’ coefficients by treating it as a function of a complex argument. This section will
give a general feel for how to do so, without getting too formal. A key theorem that allows us to work with
generating functions as analytic objects is the following.
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Theorem P (Pringsheim). If f(z) has a series expansion whose coefficients are all nonnegative and the
radius of convergence of f(z) is R, then the real number R is a singularity of f(z).

Since counting objects usually induces a generating function with nonnegative coefficients, this theorem
applies to most of the interesting cases we study. Note that we will only deal with the case where there
is a unique root of smallest modulus, meaning that R is the only singularity on the circle |z| = R. This
assumption eliminates complications that involve periodicities in the coefficients.

Rational functions. Treating a generating function as a complex function pays off immediately when the
function is a ratio f(z)/g(z) of two polynomials. Since a polynomial of degree n always has n complex roots,
we can factorise g(z) into a product of linear factors and then use the partial fraction expansion to extract
the coefficients. For example, if f(z) = z and g(z) = 18z3 − 3z2 − 4z + 1, then

f(z)

g(z)
=

z

18z3 − 3z2 − 4z + 1
=

z

18(z − 1/3)2(z + 1/2)

=
1

45(z − 1/3)2
+

1

25(z − 1/3)
− 1

25(z + 1/2)

=
1

5(1− 3z)2
− 3

25(1− 3z)
− 2

25(1 + 2z)
.

()

This immediately tells us that

[zn]
f(z)

g(z)
=

1

5
(n+ 1)3n − 3

25
3n − 2

25
(−2)n

=
1

5
n3n +

2

25
3n − 2

25
(−2)n.

()

Notice that only the first term is important, because 3n is exponentially larger than 2n. We got an exponential
factor of ∼ 3n because the root of g(z) that is closest to the origin is 1/3. The fact that this root has
multiplicity 2 gives a factor of ∼ n in the first term. It is safe to ignore all the other terms because they are
much smaller, as formalised in the following theorem.

Theorem G (Rational asymptotics). Let f(z) and g(z) be polynomials that are relatively prime, with
g(z) 6= 0. If g(z) has a a unique real root α of smallest modulus whose multiplicity is r, then

[zn]
f(z)

g(z)
∼ Cα−nnr−1 where C =

r(−1/α)rf(α)

g(r)(α)
.

This will become clear later on when we discuss a more general result. Applying this theorem to our
most recent example, we have α = 1/3, r = 2, and g′′(z) = 108z − 6. So we can derive

[zn]
z

18z3 − 3z2 − 4z + 1
=

2(−3)2(1/3)

108(1/3)− 6
3nn2−1 =

1

5
n3n, ()

which is exactly the first term in ().

Fibonacci asymptotics. As an example, recall the generating function for the Fibonacci numbers, z/(1−
z − z2). This function has poles at

−φ =
−1−

√
5

2
≈ −1.618 and φ̄ =

−1 +
√
5

2
≈ 0.618, ()

where φ is the golden ratio. The root of smaller modulus is α = φ̄ = 1/φ, and the multiplicity r = 1. This
gives

Fn = [zn]
z

1− z − z2
∼ (−φ)(1/φ)

1− 2/φ
φn =

φ

φ+ 2
φn =

1 +
√
5

5 +
√
5
φn =

φn

√
5
, ()
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which says that the ratio between successive Fibonacci numbers tends towards φ.

Meromorphic functions. Rational functions are special cases of a broader class of functions called mero-
morphic functions. A complex function is meromorphic if it can be expressed as the ratio of two analytic
functions. A function is meromorphic in a region if and only if it is analytic except for at a finite set of poles.
We will use the fact that any function that is meromorphic at the point z0 admits a Laurent expansion

h(z) =
h−M

(z − z0)M
+ · · ·+ h−1

(z − z0)
+ h0 + h1(z − z0) + h2(z − z0)

2 + · · · ,

where M is a nonnegative integer. We say that h has a pole of order M at the point z0. In this case, the
function (z − z0)

Mh(z) is analytic at z0, because the Laurent series becomes a common-or-garden Taylor
series. We have the following generalisation of Cauchy’s coefficient formula for meromorphic functions.

Theorem R (Residue theorem). Let h(z) is meromorphic in a region D and let γ be a closed loop in D.
Suppose that γ encloses k poles of h; call them α1, . . . , αk. Then

[zn]h(z) =
1

2πi

∮

γ

h(z) dz =

k
∑

i=1

Res(h, αi). ()

In particular, if h is meromorphic in closed ball |z| ≤ R, analytic at 0, and the poles have orders m1, . . . ,mk,
then

[zn]h(z) =
p1(n)

α1
n

+ · · ·+ pk(n)

αk
n

+O(R−N ), ()

where each polynomial pi has degree mi − 1.

As before, we can get a very good approximation by looking only at the pole α of smallest modulus.
The residue around that pole contributes exponentially more to the coefficient asymptotics than the others,
so we should analyse the Laurent expansion of h(z) around α. If α has order M , then this looks like

h(z) =
h−M

(z − α)M
+ · · ·+ h−1

(z − α)
+ h0 + h1(z − α) + h2(z − α)2 + · · · ,

and when z is very close to α, only the first term matters. In other words,

h(z) ∼ h−M

(z − α)M
=

h−M

(−α)M (1 − z/α)M
= (−1)M

h−M

αM

∑

n≥0

n+M − 1

αn
zn. ()

The actual residue h−M can be computed as a limit, by repeated application of l’Hospital’s Rule. If h(z) is
equal to the ratio f(z)/g(z) of analytic functions, then

h−M = lim
z→α

(z − α)Mf(z)

g(z)
=

Mf(α)

g(M)(α)
. ()

Putting this all together, we have the following theorem.

Theorem M (Meromorphic asymptotics). If h(z) = f(z)/g(z) is a meromorphic function with a unique
pole of smallest modulus α whose order is M , then

[zn]h(z) ∼ (−1)M
Mf(α)

αMg(M)(α)
α−nnM−1.

We now see that Theorem G is a special case of this, since a multiplicity-r root of a polynomial in the
denominator induces a pole of order r.

Asymptotics of derangements. Consider the following word problem: It is a Tuesday night and n froshies
leave their Residence to go to Café Campus. After attaining a sufficient state of inebriation, the n froshies
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all make it safely back to Residence, but each of them has found a random room to sleep in; that is, they
return to their rooms in a random permutation. What is the likelihood that no froshie returns to his or her
own room?

We can regard the n froshies as n labelled atoms and since a permutation as a set of cycles, this
problem asks for the proportion of all n-letter permutations that have no singleton cycle. These are exactly
the derangements, which have the EGF D(z) = e−z/(1 − z). We can use Theorem M to get an estimate
of the number of n-letter derangements. We have f(z) = e−z, g(z) = 1 − z, and a pole of order M = 1 at
α = 1. The derivative of g(z) is −1 so after a rumble and a tumble and a great deal of cancelling out 1s, we
have

n![zn]D(z) ∼ n!(−1)1
1 · e−1

11(−1)
1−nn0 =

1

e
n!. ()

There are n! total permutations so the proportion of permutations that are derangements is 1/e; we have a
1/e ≈ 36.8% chance that the froshies all end up in rooms not belonging to them.

7. Singularity Analysis

We have now dealt with generating functions that have poles. It remains to tackle functions that have
essential singularities, such as those caused by square roots and logarithms. First we need a couple of facts
about the gamma function. For positive integers n, we have Γ(n) = (n− 1)! and for all z ∈ C with ℜz > 0,
Γ is defined by

Γ(z) =

∫ ∞

0

xz−1e−x dx. ()

Now the full gamma function is defined to be the analytic continuation to a meromorphic function that has
analytic everywhere except the nonpositive integers. The nonpositive integers are poles of Γ. Just like with
factorials, we have Γ(z + 1) = zΓ(z). The important identity

Γ(1/2) =

∫ ∞

0

x−1/2e−x dx = 2

∫ ∞

0

e−x2

dx =
√
π ()

should also be memorised. The Hankel contour H is the path that starts at ∞, hovers +δ above the real
line until reaching the unit circle, travels around the unit circle counterclockwise until reaching a point a
distance of δ below the real line, then increases off to ∞ once again. The distance δ is called the slit width.
We have the identity

1

Γ(z)
=

1

2πi

∫

H

(−x)−ze−x dx, ()

which will come in handy later.

Singularity is almost invariably a clue.

— SHERLOCK HOLMES, The Boscombe Valley Mystery (1891)

The standard function scale. We saw that the function
√
z is singular when z is negative and real. More

generally, the function (1 − z)−α is singular when z is real and > 1. This leads to the fundamental result
that makes singularity analysis possible.

Theorem S (Standard function scale). If α ∈ C is not a nonpositive real number, then

[zn](1 − z)−α ∼ nα−1

Γ(α)
. ()

Proof. (Sketch.) Let H be a slight variant of the Hankel contour of slit width 1/n that circles around z = 1
instead of the origin. We start with the coefficient formula

[zn](1− z)−α =
1

2πi

∮

(1 − z)−α

zn+1
dz,
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where the path of integration goes in a circle around the origin. We deform this circle to a ball of infinite
radius that avoids the essential singularities; this is exactly the contourH . The change of variable z = 1+t/n
and dz = dt/n gives

[zn](1− z)−α =
1

2πi

∫

H

(−t)−α

n−αzn+1

1

n
dt =

nα−1

2πi

∫

H

(−t)−α

(

1 +
t

n

)−n−1

dt ∼ nα−1

Γ(α)
, ()

where the last ∼ comes from the approximation
(

1 +
t

n

)−n−1

∼
(

1 +
t

n

)−n

→ e−t

combined with ().

A similar but equally involved process proves the more general version of the standard function scale,
which also handles logarithms.

Theorem S′ (Standard function scale, logarithms). If α ∈ C is not a nonpositive real number, then

[zn](1 − z)−α

(

1

z
log

1

1− z

)β

∼ Nα−1

Γ(α)
(log n)β . ()

If f(z) is singular at z = ρ, then g(z) = f(ρz) is singular at 1 and

[zn]f(z) = ρ−n[zn]f(ρz) = ρ−n[zn]g(z). ()

When a generating function is not meromorphic, the approach to getting its coefficient asymptotics is as
follows:

i) First, we locate the dominant singularity ρ (the one closest to the origin). Check that it is the only
singularity on the circle of convergence.

ii) Next, we find functions σ and τ on the standard scale such that, for z near ρ,

f(z) = σ(z/ρ) +O
(

τ(z/ρ)
)

.

We should have τ(z) = o
(

σ(z)
)

.

iii) Lastly, we apply Theorem S′ to σ and τ to get an approximation for f .

Catalan asymptotics. We are now ready to derive an asymptotic estimate for the growth of the Catalan
numbers. Earlier, we derived the OGF

C(z) =
1−

√
1− 4z

2z
,

which has a radius of convergence of 1/4. By Pringsheim’s theorem, we have an algebraic singularity at
ρ = 1/4. Now we rewrite

C(z) =
1

2z
− (1− 4z)1/2

2z
;

when z is close to 1/4 this is
C(z) ∼ 2− 2(1− 4z)1/2. ()

Now we use the standard scale with α = −1/2. From zΓ(z) = Γ(z + 1) we infer that

−1

2
Γ(−1/2) = Γ(1/2)

Γ(−1/2) = −2
√
π
, ()

whence the famous approximation

[zn]C(z) ∼ [zn]
(

− 2(1− 4z)1/2
)

∼ −2n−3/24n

Γ(−1/2)
=

4n√
πn3/2

()

can be derived.

Simple varieties of trees. Many generating functions associated with tree classes have a generating
function that satisfies f(z) = zφ

(

f(z)
)

. We have the following theorem that generalises singularity analysis
of simple varieties of trees.
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Theorem V (Simple varieties of trees). Suppose f(z) = zφ
(

f(z)
)

and furthermore, the following conditions
hold:

i) The function φ(u) is nonlinear, satisfies φ(0) 6= 0, is analytic at 0 and has nonnegative coefficients.

ii) Within the open ball of convergence |z| < R of φ, there exists a positive real solution τ to the equation

φ(τ) = τφ′(τ). ()

Then ρ = τ/φ(τ) is the radius of convergence of f(z) and

[zn]f(z) ∼
√

φ(τ)

2πφ′′(τ)

ρ−n

n3/2
. ()

Proof. The proof is beyond the scope of the notes, but the general gist is to first show that

f(z) ∼ τ −
√

2φ(τ)/φ′′(τ)
√

(1− zφ′(τ)) ()

and then use Theorem S.

Cayley trees and Stirling’s formula. We will apply Theorem V to the family of Cayley trees, whose
EGF satisfies

T (z) = zeT (z).

So φ(u) = φ′(u) = φ′′(u) = eu, τ = 1, ρ = 1/e and

n![zn]T (z) ∼ n!

√

e

2πe

en

n3/2
=

n!en√
2πn3/2

. ()

We saw earlier that n![zn]T (z) is exactly nn−1. This can be substituted to obtain

n!en√
2πn3/2

∼ nn−1

n! ∼
√
2πn3/2 · nn−1

en
=

√
2πn

(

n

e

)n

,

()

and we have, as a byproduct of counting trees, derived Stirling’s formula!
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