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Note. These notes are more or less a retelling of some results in a 2019
paper entitled “The analytic rank of tensors and its applications” by
S. Lovett. I rearranged results in an order that makes more sense to me.
I also go more deeply into definitions (for my own sake) and skip fewer
steps, so for other students this may be easier to follow than the original
paper.

1. Introduction

There are various compatible definitions of the rank of a matrix. The one that
extends most easily to the context of tensors, which we define later, is the fol-
lowing. An m× n matrix A is said to be rank one if there exist vectors u ∈ Fm

and v ∈ Fn such that A = uvT. The rank of a general matrix A is the minimum
number k such that we can write A = A1 + · · · + Ak, where Ai is a rank one
matrix for all 1 ≤ i ≤ k.

In a first course on linear algebra, one usually learns that the rank of a matrix
is the dimension of its column (or row) space. To see that the above definition
of rank is equivalent, let A be a rank-k matrix and let B = {b1, . . . , bk} be a
basis of its column space. Since every column of A can be written as a linear
combination of vectors in B, so there is a k × n matrix C such that A = BC.
Now letting c1, . . . , ck be the rows of C, we have

A = b1c1
T + · · ·+ bkck

T,

so the rank of A is at most k. On the other hand, if

A = u1v1
T + · · ·+ uk′vk′

T,

for some k′ < k, then for all x ∈ Fn, we have

Ax = u1v1
Tx+ · · ·+ uk′vk′

Tx.

Since vi
Tx is a scalar for all 1 ≤ i ≤ k′, we conclude that u1, . . . , uk′ span the

image of A and the column space of A is at most k′ < k.
Any m × n matrix A gives a bilinear map from Fm × Fn to F by taking

(x, y) 7→ xAy. We extend this to more than two vector spaces by defining an
order-d tensor to be a multilinear map T : V1×· · ·×Vd → F, where Vi is a vector
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space over F for all 1 ≤ i ≤ d. From here on out, we restrict ourselves to the
case where each Vi has the same dimension n and can thus be identified with Fn.
Then there exist nd scalars {Tj1,...,jd}j1,...,jd∈[n] such that for all x1, . . . , xd ∈ Fn,

T (x1, . . . , xd) =
∑

j1,...,jd∈[n]

Tj1,...,jdx1,j1 · · ·xd,jd ,

where xi,k denotes the kth component of the vector xi. There is thus a one-to-
one correspondence between order-d tensors and d-dimensional arrays of scalars
(in our setting each dimension has size n). If T is an order-d tensor and T ′ is
an order-d′ tensor, then we can form a tensor of order d+ d′ from the (d+ d′)-
dimensional array of scalars

{Ti1,...,idT
′
j1,...,jd′

}i1,...,id,j1,...,jd′∈[n].

This tensor is denoted T ⊗ T ′ and is called the tensor product of T and T ′.
Now we say that an order-d tensor T is partition rank one if there exists

A ⊆ [d] with 0 < |A| < d, as well as an order-|A| tensor T1 and an order-(d−|A|)
tensor T2 such that T can be written as

T (x1, . . . , xd) = T1(xi : i ∈ A)T2(xi : i /∈ A).

The partition rank prk(T ) of a general tensor T is the minimum k such that T
can be written as a sum of k partition rank one tensors. Note that in the case
d = 2 this reduces to the ordinary matrix rank.

The cap set problem. The partition rank was introduced to study the cap-set
problem, and here we shall sketch how it applies. A cap set is a subset A ⊆ Fn

3

such that for every triple (x, y, z) ∈ A of pairwise distinct elements, x+y+z 6= 0.
It was shown by T. C. Brown and J. P. Buhler that, loosely speaking, cap sets
have zero density.

Theorem C (Brown–Buhler, 1986). For every δ > 0 there exists n such that

every subset A ⊆ Fn
3 with |A| ≥ δ3n contains three pairwise distinct elements x,

y, and z with x+ y + z = 0.

A later paper by R. Meshulam gave better quantitative bounds on n with
respect to δ; namely, it was shown that we need only take n > 2/δ. This means
that if A is a cap set in Fn

3 , then |A| ≤ 2 · 3n/n. However, it was long suspected
that this bound could be improved to |A| ≤ O(cn) for some c < 3. This was
finally proved in 2017 by J. S. Ellenberg and D. Gijswijt, and T. Tao showed
in a blog post (dated 18 May 2016) that thir proof can be restated in terms of
the partition rank of a function in 3 variables. This can actually be modified
so the function is a 3-tensor, but to just get the general idea, let us extend our
definition of partition rank to general functions of three variables temporarily.

Given A ⊆ Fn
3 , let T : V 3 → F3, where V = F3

Fn

3 , be given by

T (ea, eb, ec) =

{

1, if a+ b+ c = 0;
0, otherwise,
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for basis vectors ev and extended to all other vectors by linearity. (The function
ev has ev(v) = 1 and ev(x) = 0 for all x 6= v.) Now for a tensor T : (FX)d → F,
we say that a set A ⊆ X is an independent set in T if for all i1, . . . , id ∈ A, the
condition that the coefficient Ti1,...,id be nonzero is equivalent to i1 = · · · = id.
We then give an upper bound on the size of a cap set by proving that

i) if A contains no nontrivial solutions to x+y+z = 0, then A is an independent
set in T ;

ii) if A is an independent set in T then prk(T ) ≥ |A|; and

iii) the partition rank of T is low.

In these notes, we aim to show that this general strategy may be performed
with the partition rank replaced by something called the analytic rank.

The analytic rank. In a 2011 paper, W. T. Gowers and J. Wolf introduced
another definition of rank that is Fourier-analytic in nature. Now we require
the field F to be finite, and let χ : F → C be any nontrivial additive character.
Recall that for such a character, Ea∈F χ(a) = 0. The bias of a tensor T : V d → F

is the average
bias(T ) = Ex∈V d χ

(

T (x)
)

.

Note that if T is a linear form (i.e., an order-1 tensor) that is not identically zero,
then bias(T ) = 0, since we can bring the sum inside all three functions and the
sum over all elements a vector space over a finite field is zero. If T is identically
zero then bias(T ) = 1. Now to see that the bias of a tensor is always in (0, 1],
note that if we fix any (x2, . . . , xd) ∈ V d−1, then T (x1, x2, . . . , xd) becomes a
linear form (order-1 tensor) in x1 and

bias(T ) = Ex2,...,xd∈V Ex1∈V χ
(

T (x1, . . . , xd)
)

= Px2,...,xd∈V

{

T (x1, . . . , xd) ≡ 0
}

,

from our earlier observation about order-1 tensors.
The analytic rank is defined to be the quantity

ark(T ) = − log|F| bias(T );

since bias(T ) ∈ (0, 1] we have ark(T ) ≥ 0. In the case of order-2 tensors, the
analytic rank is once again equivalent to ordinary matrix rank. To see this,
suppose that T : (Fn)2 → F is defined as T (x, y) =

∑r

i=1 xiyi. Then bias(T ) is
the probability that, fixing y, the linear form T (x, y) is identically zero. This is
equivalent to every coordinate of y being zero, which happens with probability
1/|F|r, and hence we see that ark(T ) = r.

2. Subadditivity of analytic rank

The goal of this section is to prove that if T and S are tensors, then ark(T+S) ≤
ark(T ) + ark(S). Our first small lemma is the following.
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Lemma 1. Let W0,W1, . . . ,Wn : Fm → F be functions. Let functions A,B :
Fn × Fm → F be given by

A(x, y) =
n
∑

i=1

xiWi(y) and B(x, y) = A(x, y) +W0(y).

Then
∣

∣bias(B)
∣

∣ ≤ bias(A).

Proof. We expand

bias(B) = Ex∈Fn,y∈Fm χ
(

B(x, y)
)

= Ey∈Fm 1[W1(y)=···=Wn(y)=0] ·χ
(

W0(y)
)

and by the triangle inequality,

∣

∣bias(B)
∣

∣ ≤ Ey 1[W1(y)=···=Wn(y)=0] = bias(A).

This lemma is used to prove a bound on the bias of a certain sum of tensors.
First, we introduce some notation. With some d fixed, we let x = (x1, . . . , xd)
and similarly for y = (y1, . . . , yd). Then for I ⊆ [d], define Ic = [d] \ I and let
xI = (xi : i ∈ I).

Lemma 2. Let d ≥ 1 and for each I ⊆ [d], let RI : V I → F be an order-|I|
tensor. Consider the function

R(x) =
∑

I⊆[d]

RI(xI).

Then
∣

∣bias(R)
∣

∣ ≤ bias(R[d]).

Proof. Fix some i ∈ [d] and write R(x) as

R(x) =
∑

I∋i

RI(xI) +
∑

I 6∋i

RI(xI).

Setting x = xi and y = x[d]\{i}, the first sum has the form

n
∑

i=1

xiWi(y)

and the second sum does not depend on x at all, so we can set it to be W0(y).
The previous lemma now tells us that

∣

∣bias(R)
∣

∣ ≤ bias
(

∑

I∋i

RI(xI)
)

.
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Now iterate this with i = d all the way down to i = 1 (replacing d by d− 1 each
time) to get the statement of the lemma.

Before proving subadditivity, we introduce another bit of notation. For
I ⊆ [d], let

TI(x,y) = T (xI ,yIc) = T (z1, . . . , zd),

where zi = xi if i ∈ I and zi = yi if i /∈ I. After expanding out the definition of
multilinearity, we see that T (x+ y) decomposes as

T (x+ y) =
∑

I⊆[d]

TI(x,y).

Theorem 3. Let T, S : V d → F be order-d tensors. Then

ark(T + S) ≤ ark(T ) + ark(S).

Proof. It is enough to show that

bias(T + S) ≥ bias(T ) bias(S).

We express

bias(T ) bias(S) =
(

Ex∈V d χ
(

T (x)
)

)(

Ey∈V d χ
(

T (y)
)

)

= Ex∈V d Ey∈V d χ
(

T (x) + S(y)
)

= Ex∈V d Ey∈V d χ
(

T (x) + S(x+ y)
)

= bias
(

T (x) + S(x+ y)
)

,

and by our earlier decomposition the tensor product of a sum, this gives us

bias(T ) bias(S) = bias
(

T (x)+
∑

I⊆[d]

SI(x,y)
)

= bias
(

(T+S)(x)+
∑

I 6=[d]

SI(x,y)
)

,

Setting y = b ∈ V d to maximise the norm of this right-hand side, we have

bias(T ) bias(S) ≤
∣

∣

∣
bias

(

(T + S)(x) +
∑

I 6=[d]

SI(x,b)
)∣

∣

∣
.

Here SI(x,b) is an order-|I| tensor in the variables xI . Thus we may apply the
previous lemma with

R[d](x) = (T + S)(x) and RI(xI) = SI(x,b) for I 6= [d]

to get bias(T ) bias(S) ≤ bias(T + S).

As an application of this theorem, we show that common roots of tensors
on a common input are positively correlated.
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Corollary 4. Let T1, . . . , Tm, S1, . . . , Sn : V d → F be order-d tensors. Then

Px∈V d

{

T1(x) = · · · = Tm(x) = S1(x) = · · · = Sn(x) = 0
}

≥

Px∈V d

{

T1(x) = · · · = Tm(x) = 0} ·Px∈V d

{

S1(x) = · · · = Sn(x) = 0}

Proof. Define order-(d+ 1) tensors T and S by setting

T (x0, x1, . . . , xd) =
m
∑

i=1

x0,iTi(x1, . . . , xd)

and

S(x0, x1, . . . , xd) =
m+n
∑

i=m+1

x0,iSi−m(x1, . . . , xd).

The left-hand side of the desired inequality is bias(T + S) and the right-hand
side is bias(T ) bias(S).

3. Analytic rank and partition rank

In this section, we shall discuss properties of the analytic rank that allow it to
be used as the partition rank was used above in the cap-set problem. First, we
show that the analytic rank is bounded above by the partition rank.

Theorem 5. Let T : V d → F be an order-d tensor. Then ark(T ) ≤ prk(T ).

Proof. By Theorem 3, we only need to consider the case where T has partition
rank one. So we assume that T : V d → F factors as

T (x) = T1(xA)T2(xB),

where A ∪ B = [d] is a nontrivial partition of [d]. We shall show that ark(T ) ≤
1 = prk(T ) by showing that bias(T ) ≥ 1/|F|. For a, b ∈ F define the function

Fa,b(x) =
(

T1(xA) + a
)(

T2(xB) + b
)

.

Letting R[d] = T , R∅ = ab, RA = bT1(xA), RB = aT2(xB), and RI be the zero
tensor (of the corresponding order) for all other I ⊆ [d], we see that R = Fa,b

and by Lemma 2,
∣

∣bias(Fa,b)
∣

∣ ≤ bias(T ). On the other hand, we have

Ea,b∈F bias(Fa,b) = Ea,b∈F Ex∈V d χ
(

(T1(xA) + a)(T2(xB) + b)
)

= Ea,b∈F χ(ab)

= Pb∈F{b = 0}

=
1

|F|
.
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So we may find a, b such that bias(T ) ≥
∣

∣bias(Fa,b)
∣

∣ ≥ 1/|F|, which is what we
wanted.

Since we are often interested in finding some upper bound on the partition
rank in applications, this theorem suggests that it should actually be easier
to upper bound the analytic rank, though ad hoc methods to do so have not
currently been developed.

In applications, it is also important that the partition rank of a tensor T
is bounded below by the size of an independent set in T . Towards showing a
version of this for the analytic rank, we first show that the analytic rank does
not increase when the tensor is restricted to a subspace.

Lemma 6. Let T : V d → F be an order-d tensor and let U ⊆ V be a subspace.

If T |U : Ud → F is the restriction of T to U , then ark(T |U ) ≤ ark(T ).

Proof. Let W ⊆ V be a subspace so that V = U ⊕W . Then any v ∈ V has a
unique expression as v = u+ w for u ∈ U and w ∈ W , so

bias(T ) = Eu1,...,ud∈U Ew1,...,wd∈W χ
(

T (u1 + w1, . . . , ud + wd)
)

.

Fix an arbitrary choice of w1, . . . , wd ∈ W . Then

T (u1 + w1, . . . , ud + wd) =
∑

I⊆[d]

TI(uI , wIc),

where TI(uI , wIc) = T (z1, . . . , zd) where zi = ui if i ∈ I and zi = wi if i /∈ I. By
Lemma 2, we have

∣

∣Eu1,...,ud∈U χ
(

T (u1 + w1, . . . , ud + wd)
)
∣

∣ ≤ Eu1,...,ud∈U χ
(

T (u1, . . . , ud)
)

= bias(T |U )

Since this is for all w1, . . . , wd, averaging the left-hand side over all choices and
applying the triangle inequality gives us what we want.

We are now able to show that for any tensor T and independent set A in T ,
we have ark(T ) ≥ c|A| for c depending on d and |F|.

Theorem 7. Let T : (Fn)d → F be an order-d tensor. Assume that A ⊆ [n] is
an independent set in T . Then ark(T ) ≥ c|A| where

c = − log|F|

(

1−

(

1−
1

|F|

)d−1)

,

so that c ≥ 2−d and c ≥ 1− log(d− 1)/ log |F|.

Proof. Let S : (FA)d → F be the restriction of T to FA. By the previous lemma,
ark(S) is a lower bound on ark(T ), so we shall prove the theorem by expressing
ark(S) as a function of |A|. We have

bias(S) = Ex1,...,xd∈FA χ
(

∑

i∈A

ci
∏

j∈[d]

xi,j

)

,
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where, since A is an independent set, ci 6= 0 for all i ∈ A. But we also know that

bias(S) = Px2,...,xd∈FA

{

⋂

i∈A

{xi,2 · · ·xi,d = 0}
}

,

and this is easily seen to be

bias(S) =

(

1−

(

1−
1

|F|

)d−1)|A|

.

Taking the logarithm of both sides, we see that ark(S) = c|A|, where c is as in
the theorem statement.

By convexity,
c ≥ − log2(1− 2−(d−1)) ≥ 2−(d−1).

Also, as long as |F| ≥ d, we have

c ≥ − log|F|

(

(d− 1)/|F|
)

= 1− log|F|(d− 1).
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