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1. Introduction

Let Z be a finite abelian group. A character on Z is a homomorphism from Z
to the multiplicative group C \ {0}. It is easily seen that |χ(x)| must equal 1

for all x ∈ Z. The set of characters forms a group, which we shall denote by Ẑ.
This is the Pontryagin dual of Z. Letting Zn be the n-element cyclic group, if
Z = Zn1 × Zn2 × · · · × Znr

, then for every u = (u1, . . . , ur) ∈ Z the function
χu : Z → C given by

χu(x1, . . . , xr) =
r∏

i=1

exp

(
2πiuixi

ni

)

is a character, and in fact the map u 7→ χu gives an isomorphism of groups from
Z to Ẑ.

The space of functions from Z to C can be made into an inner product space
by setting

〈f, g〉 = Ex∈Z f(x)g(x),

where Ex∈Z F (x) = |Z|−1
∑

x∈Z F (x), and likewise we define an inner product

on the space of functions from Ẑ to C by putting

〈f̂ , ĝ〉 =
∑

χ∈Ẑ

f̂(χ)ĝ(χ).

For f : Z → C, the Fourier transform of f is the function f̂ : Ẑ → C given by

f̂(χ) = 〈f, χ〉 = Ex∈Z f(x)χ(x).

Of course, we can associate to any α ∈ Z the character χα ∈ Ẑ, so we may write
f̂(α) to mean f̂(χα), and this is called the Fourier coefficient of f at α.

It is not difficult to prove that any two distinct characters are orthogonal in
the space of functions from Z to C. Furthermore, for any x ∈ Z we can define a
function Fx : Ẑ → C by Fx(χ) = χ(x), and one can similarly show that if x 6= y,

then 〈Fx, Fy〉 = 0. So since both of the vector spaces CZ and CẐ have dimension
n, we have found orthogonal bases for these spaces, namely {χu : u ∈ Z} and
{Fx : x ∈ Z} respectively.

We have the following important formulas, whose proofs can be found in
any book on Fourier analysis.
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Theorem P (Parseval–Plancherel identity). Let Z be a finite abelian group and

let f, g : Z → C. If f̂ and ĝ are the Fourier transforms of f and g respectively,
then 〈f, g〉 = 〈f̂ , ĝ〉.

Theorem I (Fourier inversion formula). Let Z be a finite abelian group and
let f : Z → C. Then

f(x) =
∑

χ∈Ẑ

f̂(χ)χ(x).

Recall also the Cauchy–Schwarz inequality, which wears many disguises but
in our context says that

(∑

x∈Z

|f(x)| · |g(x)|
)2

≤
(∑

x∈Z

|f(x)|2
)(∑

x∈Z

|g(x)|2
)

for all f, g : Z → C.

2. The uncertainty principle

The support of a function f : Z → C is the set {x ∈ Z : f(x) 6= 0}. We will write
||f ||0 for the size | supp(f)| of the support, and it is also convenient to write ||f ||∞
for the quantity maxx∈Z |f(x)|. (These are defined analogously for functions on

Ẑ.) The uncertainty principle states that the support of f : Z → C and the

support of its Fourier transform f̂ : Ẑ → C cannot both be small. We will make
this fact quantitative very soon. First off, let us prove a lemma.

Lemma 1. Let f be a function from an abelian group Z to C and let f̂ be its
Fourier transform. Then

||f̂ ||∞ ≤ Ex∈Z |f(x)|.

Proof. Let χ ∈ Ẑ be given. We have, by the definition of Fourier transform and
the triangle inequality,

|f̂(χ)| =
∣∣∣Ex∈Z f(x)χ(x)

∣∣∣ ≤ Ex∈Z

∣∣f(x)χ(x)
∣∣,

but since |χ(x)| = 1 for all x, this is exactly the right-hand side of the lemma
statement and we are done since χ was arbitrary.

We now state and prove the Fourier uncertainty principle.

Theorem 2 (Fourier uncertainty principle). Let Z be a finite abelian group

and Ẑ be its dual. If f : Z → C is not identically zero and f̂ : Ẑ → C is its
Fourier transform, then

||f ||0 · ||f̂ ||0 ≥ |Z|.

Proof. By the previous lemma and the definition of the support,

||f̂ ||∞ ≤ Ex∈Z |f(x)| =
1

|Z|

∑

x∈Z

|f(x)| =
1

|Z|

∑

x∈supp(f)

|f(x)|.



MARCEL K. GOH 3

We then use the Cauchy–Schwarz inequality to obtain

∑

x∈supp(f)

|f(x)| ≤

√ ∑

x∈supp(f)

|f(x)|

√ ∑

x∈supp(f)

12 =

√
||f ||0

∑

x∈Z

|f(x)|2,

and so far we have shown that

||f̂ ||∞ ≤
1

|Z|

√
||f ||0

∑

x∈Z

|f(x)|2.

But by the Parseval–Plancherel identity, we have

∑

x∈Z

|f(x)|2 = |Z|
∑

χ∈Ẑ

|f̂(χ)|2 ≤ |Z| · ||f̂ ||0 · ||f̂ ||
2
∞,

and plugging this in above, we have

||f̂ ||∞ ≤ ||f̂ ||∞

√
||f ||0 · ||f̂ ||0

|Z|
.

Since f is not the zero function, we can divide both sides by ||f̂ ||∞, square the
inequality, then rearrange to get the theorem statement.

It can be shown that we have equality above if and only if f is (some multiple
of) the characteristic function of a coset of a subgroup of Z.

So far so good, but for Z = Zp a much stronger uncertainty principle holds,
and the rest of these notes will be dedicated to establishing the algebraic ma-
chinery needed to prove it.

3. Cyclotomic polynomials

Let n be a positve integer. An nth root of unity is any complex number ω such
that ωn = 1. Note that if d divides n, then any ω with ωd = 1 also satisfies
ωn = 1, so in some sense this number should be associated to d and not n. An
nth root of unity is called primitive if it is not an mth root of unity for any
1 ≤ m < n. (Thus any nth root of unity is a primitive dth root of unity for
exactly one d dividing n.) The nth cyclotomic polynomial, which we shall denote
by Φn, is given by

Φn(z) =
∏

ω

(z − ω),

where in the product, ω runs over the primitive nth roots of unity. As some
small examples, we have Φ1(z) = z − 1, Φ2(z) = z + 1, Φ3(z) = z2 + z + 1, and
Φ4(z) = z2+1. Observe that so far, all the coefficients have been integers, a fact
which is not obvious from the definition but can be shown by induction (and
indeed we shall).
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In the proof of the next lemma we will also require the von Mangoldt function

Λ(n), which is defined on positive integers by the rule

Λ(n) =

{
log p, if n = pk for some prime p and some integer k ≥ 1;
0, otherwise.

By the fundamental theorem of arithmetic, any integer n can be factored into
n = p1

e1p2
e2 · · · ps

es , and taking logarithms of both sides we see that

log n =

s∑

i=1

ei log pi =
∑

d\n

Λ(d).

Lemma 3. Let n ≥ 1. The nth cyclotomic polynomial Φn is monic with integer
coefficients and we have

Φn(1) =

{
0, if n = 1;
p, if n = pk for some integer k ≥ 1;
1, otherwise.

Proof. Let Ωn be the set of all nth roots of unity, primitive or not. Then the
polynomial zn − 1 factors as

zn − 1 =
∏

ω∈Ωn

(z − ω).

Now since every nth root of unity is a primitive dth root of unity for exactly one
d dividing n, we can group roots together and write

zn − 1 =
∏

d\n,

Φd(z).

Let us prove the formula for Φn(1) first. Of course, Φ1(1) = 1−1 = 0. Then
for n > 1,

zn − 1

Φ1(z)
= lim

z→1

zn − 1

z − 1
= lim

z→1

nzn−1

1
= n,

giving us the formula

n =
∏

d\n, d>1

Φd(1).

Taking logarithms of both sides, we have

log n =
∑

d\n, d>1

log Φd(1),

and by the formula above for the von Mangoldt function Λ, as well as the fact
that Λ(1) = 0, we have

∑

d\n, d>1

Λ(d) =
∑

d\n, d>1

log Φd(1).
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The claim is that these two sums are actually equal term-by-term. When n is
prime, the statement above already shows that log Φp(1) = Λ(p) = log p, and
supposing the claim proven for all m < n, we cancel all smaller terms in the
formula to conclude that Λ(n) = logΦn(1), which is what we needed to show.

Now we prove that Φn has integer coefficients. Again, the proof starts with
the decomposition of zn − 1 into linear factors, which this time we write as

zn − 1 = Φn(z)
∏

d\n, d<n

Φd(z).

With the base case Φ1(z) = z − 1, strong induction would prove the claim if we
can show that in a factorisation

zn − 1 = (a0 + a1z + · · ·+ arz
r)(b0 + b1z + · · ·+ bsz

s),

the hypotheses bs = 1 and bj being integer for all 1 ≤ j < s implies that the
coefficients ai are all integer for 1 ≤ i ≤ r and that this polynomial is monic as
well. The fact that ar = 1 is obvious. Then since b0 is an integer and a0b0 = −1,
both a0 and b0 must be ±1. Now assume that for some t ≥ 0, ai is integral for
all 1 ≤ i ≤ t, and consider the coefficient of zt+1 of the left-hand side. Call this
coefficient ct+1 and note that it is an integer (in fact, it is either 0 or 1, but that
is unimportant). We expand

ct+1 = at+1b0 + atb1 + · · ·+ a0bt+1,

and rearrange to obtain

at+1 =
ct+1 − atb1 − at−1b2 − · · · − a0bt+1

b0
,

from which we conclude by induction on t that

at+1 = ±(ct+1 − atb1 − at−1b2 − · · · − a0bt+1)

is an integer. This also completes the induction on n, so we have shown that Φn

is a monic polynomial with integer coefficients for all n.

4. Irreducibility of cyclotomic polynomials

A polynomial f(z) with integer coefficients is said to be irreducible over Z if
it cannot be expressed as a product of two nonconstant polynomials in Z[z].
This section will be devoted to proving that the cyclotomic polynomials Φn are
irreducible over Z. First we need a lemma in the ring of formal polynomials
Fp[z].
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Lemma 4. Let f(z) be a polynomial with coefficients in Fp. Then f(zp) =
f(z)p in Fp[z].

Proof. Let f(z) = a0 + a1z + · · ·+ amzm. We have

f(z)p = (a0 + a1z + · · ·+ amzm)p =
∑

k1+···+km=p

(
p

k1, . . . , km

) m∏

j=1

(ajz
j)kj

by the multinomial theorem. But unless some ki = p and all the others are 0,
there is a p in the numerator of the multinomial coefficient that does not appear
in the denominator. Hence in Fp we have

(
p

k1, . . . , km

)
=

{
1, if ki = p for some i;
0, otherwise.

Applying Fermat’s little theorem, which states that ap = a in Fp, we have

f(z)p =
m∑

i=1

(aiz
i)p =

m∑

i=1

ai(z
i)p = f(zp),

which is what we wanted to show.

Theorem 5. The nth cyclotomic polynomial is irreducible over Z.

Proof. Suppose, towards a contradiction, that Φn = fg for nonconstant f and
g in Z[z]. Then we can partition the primitive n roots of unity into two disjoint
nonempty classes A and B such that

f(z) =
∏

ω∈A

(z − ω) and g(z) =
∏

ω∈B

(z − ω).

Since any two primitive roots are powers of one another, there exists ω ∈ A and
an integer m > 1 such that ωm ∈ B. Factor m into primes m = p1p1 · · · pk. Let
ω0 = ω and for 1 ≤ i ≤ k let ωi = ωp1p2···pi . Let j be the smallest integer such
that ωj ∈ B. (Since ω0 ∈ A and ωk = ωm ∈ B, such a j must exist.) Now letting
ω′ = ωp1···pj−1 and setting p = pj , we have found some ω′ ∈ A and some prime
p such that ωp ∈ B.

This means that ω′ is a root of both f(z) and g(zp). Let h(z) be the
greatest common divisor of f(z) and g(zp). By the Euclidean algorithm there
exist polynomials r(z) and s(z) such that

h(z) = f(z)r(z) + g(zp)s(z),

showing that h(z) has ω′ as a root and, in particular, is not constant. Now
we consider everything as polynomials in Fp[z], which is a unique factorisation
domain. Applying the previous lemma twice, we have h(zp) = h(z)p and znp −
1 = (zn − 1)p in this ring. Now since Φn(z

p) = f(zp)g(zp) = f(z)pg(zp), we find



MARCEL K. GOH 7

that in Fp[z], the polynomial h(z)p+1 divides Φn(z
p), and because Φn(z

p) divides
znp − 1 = (zn − 1)p, we see that h(z)p+1 divides (zn − 1)p as well. This means
that h(z)2 divides zn − 1. Putting p(z) = zn − 1, this means that there is some
polynomial q such that p = h2q. Then we find that nzn−1 = p′ = 2hh′q + h2q′

is divisible by h, and thus zn− 1 and nzn−1 have a nonconstant common factor.
On the other hand, letting n−1 be the multiplicative inverse of n in Fp, we

can run the Euclidean algorithm on zn − 1 and nzn−1:

zn − 1 = (n−1z)(nzn−1) + (−1)

nzn−1 = (−1)(−nzn−1) + 0,

discovering that the greatest common divisor of these two polynomials is 1. This
contradiction shows that Φn(z) is irreducible over Z.

5. Vandermonde determinants

In our journey towards proving a stronger uncertainty principle over Fp, we
will require special polynomials called Vandermonde determinants. These are
indexed by n ≥ 1 and defined by

∆n(z1, . . . , zn) =
n∏

i=1

n∏

j=i+1

(zj − zi).

The next lemma justifies the name “determinant”.

Lemma 6. Let z1, . . . , zn be indeterminates. Letting

V =




1 z1 z1
2 · · · z1

n−1

1 z2 z2
2 · · · z2

n−1

...
...

...
. . .

...
1 zn zn

2 · · · zn
n−1


 ,

we have ∆n(z1, . . . , zn) = detV .

Proof. By the Leibniz formula for determinants, we have

detV =
∑

π∈Sn

sgn(π)
n∏

i=1

zi
π(i)−1,

where Sn is the symmetric group of all permutations on n letters. (The factor
sgn(π) is 1 if the permutation π factors as a product of an even number of
transpositions, and −1 if it factors as an odd number of transpositions.) Since
the ith column of V contains only monomials of degree i − 1, every term of
detV is a monomial in which the sum of the degrees over all coefficients is
0 + 1 + · · ·n− 1 = n(n− 1)/2.
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In the formula

∆n(z1, . . . , zn) =
n∏

i=1

n∏

j=i+1

(zj − zi),

note that since the product runs over
(
n
2

)
= n(n−1)/2 linear factors, every term

in this sum is a monomial of total degree n(n − 1)/2 as well. Because detV
is equal to zero if any two of the zi are equal, detV is divisible by the linear
polynomial zj − zi for all i < j. Repeating this for all such i and j, we conclude
that ∆n(z1, . . . , zn) divides detV ; that is, detV = ∆nf for some polynomial f .
But since both of them consist purely of monomials of total degree n, f must
be a constant polynomial. To find out what this constant factor is, note that
the term corresponding to the identity permutation in the Leibniz formula is
z2z3

2z4
3 · · · zn

n−1, and expanding

∆n(z1, . . . , zn) = (z2 − z1)(z3 − z2)(z3 − z1)(z4 − z3) · · · (zn − z1),

a moment’s scrutiny reveals that this term is also z2z3
2z4

3 · · · zn
n−1, and hence

f must equal 1, which is what we needed.

Lemma 7. Let n1, . . . , nk be positive integers and let P ∈ Z[z1, . . . , zk] be the
polynomial given by

P (z1, . . . , zn) =
∑

π∈Sk

sgn(π)
k∏

i=1

zi
nπ(i) .

Then we may factor P = ∆kQ, where Q ∈ Z[z1, . . . , zk] is such that

Q(1, 1, . . . , 1) = ∆k(n1, . . . , nk)/∆k(1, . . . , k).

Proof. By the Leibniz formula, P (z1, . . . , zn) is the determinant of the k × k
matrix whose entry in the ith row and jth column is zni

j . As in the previous
proof, P is divisible by zj − zi for all i < j and dividing out these linear factors,
we obtain a polynomial Q such that P = ∆kQ.

It remains to compute Q(1, 1, . . . , 1). To do so, we make use of the nor-
malised differentiation operators Di = zi(∂/∂zi). It is easy to see that these
operators obey the product rule Di(fg) = fDig +Difg. Since

Di(z1
n1 · · · zk

nk) = ni(z1
n1 · · · zk

nk),

this monomial is an eigenfunction of Di with eigenvalue ni. Now consider the
polynomial

(D2D3
2D4

3 · · ·Dk
k−1)P = (D2D3

2D4
3 · · ·Dk

k−1)
(
Q ·

∏

i<j

(zj − zi)
)
,
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evaluated at 1. There are k(k− 1)/2 differentiation operators to be applied and
the same number of linear factors on the right-hand side. Repeatedly applying
the product rule, we obtain 2k(k−1)/2 terms, but the only terms that survive
when evaluated at (1, . . . , 1) are the ones in which each linear factor zj − zi is
acted upon by either Dj or Di, yielding zj or −zi respectively.

Note that there are k − 1 instances of the operator Dk to be applied, and
there are only k − 1 factors with the variable zk appearing, namely the factors
of the form zk − zi for some i < k. So all those operators must hit those factors
(yielding zk), and there are (k − 1)! ways for this to happen. With those out
of the way, there are now k − 2 instances of Dk−1 to be applied, and the only
undifferentiated factors with the variable zk−1 appearing are the factors of the
form zk−1 − zi, of which there are k − 2. So there are (k − 2)! ways for this to
happen. Continuing in this manner, we see that

(D2D3
2D4

3 · · ·Dk
k−1P )(1, . . . , 1) = 0!1!2! · · · (k − 1)!Q(1, . . . , 1).

But note that

∆k(1, . . . , k) =
k∏

i=1

k∏

j=i+1

(j − i) =
k∏

i=1

(i− 1)! = 0!1!2! · · · (k − 1)!,

so
(D2D3

2D4
3 · · ·Dk

k−1P )(1, . . . , 1) = ∆k(1, . . . , k)Q(1, . . . , 1).

But from the definition of P and the observation that z
nπ(i)

i is an eigenfunc-
tion of the operator Di with eigenvalue nπ(i), we directly compute

(D2D3
2D4

3 · · ·Dk
k−1P )(z1, . . . , zk) =

∑

π∈Sn

sgn(π)
k∏

i=1

nπ(i)
i−1z

nπ(i)

i .

Evaluating at z1 = · · · = zk = 1 and noting that the sum over all π in Sn also
runs over all π−1 in Sn (π and π−1 have the same sign), we see that

(D2D3
2D4

3 · · ·Dk
k−1P )(1, . . . , 1) = ∆k(n1, . . . , nk).

Combining this with our earlier computation gives the conclusion

Q(1, . . . , 1) = ∆k(n1, . . . , nk)/∆k(1, . . . , k),

which is what we wanted to prove.

6. Chebotarëv’s lemma

Armed with the irreducibility of cyclotomic polynomials and the computation
from the last section, we can now prove a useful lemma concerning matrices of
qth roots of unity, where q is a prime power. First we prove a criterion for the
nonvanishing of polynomials on qth roots of unity.
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Lemma 8. Let p be a prime and q an integer power of p. Let Q ∈ Z[z1, . . . , zk]
be such that Q(1, . . . , 1) is not divisible by p. Then for any k-tuple (ω1, . . . , ωk)
of qth roots of unity, Q(ω1, . . . , ωk) 6= 0.

Proof. We proceed by contraposition. Suppose that ω1, . . . , ωk exist such that
Q(ω1, . . . , ωk) = 0. Letting ω be a primitive root of unity, there are integers
n1, . . . , nk such that for all i, ωi = ωni . Let R ∈ Z[z] be given by R(z) =
Q(zn1 , . . . , znk). Then R(ω) = 0. Thus R(z) has a root in common with the
cyclotomic polynomial Φq(z). But we showed earlier that this polynomial is
irreducible, implying that Φq(z) divides R(z). So Q(1, . . . , 1) = R(1) is divisible
by Φq(1) = p.

We are now able to prove the following useful result, which is named after
N. Chebotarëv.

Lemma 9 (Chebotarëv, 1926). Let q be a prime power, let 1 ≤ k < p, and let
ω1, . . . , ωk be distinct qth roots of unity. Let n1, . . . , nk be integers that are all
distinct modulo p. Then the k × k matrix whose entry in the ith row and jth
column is ωi

nj has nonzero determinant.

Proof. Let P (z1, . . . , zk) be the determinant of the matrix (zi
nj )1≤i,j≤k. This

is the polynomial from Lemma 7, and that lemma says that we can factor P =
∆kQ, where Q is a polynomial with integer coefficients such that

Q(1, . . . , 1) = ∆k(n1, . . . , nk)/∆k(1, . . . , k).

We want to show that P (ω1, . . . , ωk) is not zero. Since ωi are all distinct,
∆k(ω1, . . . , ωk) is a product of

(
k
2

)
nonzero elements, and in particular is nonzero.

So we need only show that Q(ω1, . . . , ωk) 6= 0 and by the previous lemma, it suf-
fices to show that Q(1, . . . , 1) is not divisible by p. But the numerator in the
formula for Q(1, . . . , 1), namely ∆k(n1, . . . , nk) is a product of differences nj−ni

for all 1 ≤ i < j ≤ k, and these differences were all assumed to be nonzero mod-
ulo p. Thus their product is nonzero modulo p; in other words, their product is
not divisible by p. This completes the proof.

7. Tao’s improved uncertainty principle

Chebotarëv’s lemma is all we need to prove Tao’s improved Fourier uncertainty
principle for functions f : Zp → C. First we state a corollary of that lemma.

Corollary 10. Let p be a prime and let A and B be subsets of Zp with |A| = |B|.

The linear transformation CA → CB define by Tf = f̂ |B (that is, we restrict
the Fourier transform of f to B) is invertible. (We write, for instance, CA to
denote functions from A to C, or in other words, functions f : Zp → C such
that supp(f) ⊆ A.)

Proof. Write Z = Zp. Recall that the sets {χu : u ∈ Z} and {Fx : x ∈ Z}, as

defined in the introduction, are orthogonal bases for CZ and CẐ respectively.
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In the first basis, by the Fourier inversion formula, the function f is represented
by the vector

(
f̂(0), . . . , f̂(p− 1))

)
, and in the second basis, by the definition of

Fourier transform, the function f̂ is represented by the vector p−1
(
f(0), . . . , f(p−

1)
)
. If we set ω = e2πi/p, then the Fourier inversion formula can be expressed as




f(0)
f(1)
...

f(p− 1)


 =




χ0(0) χ1(0) · · · χp−1(0)
χ0(1) χ1(1) · · · χp−1(1)

...
...

. . .
...

χ0(p− 1) χ1(p− 1) · · · χp−1(p− 1)







f̂(0)

f̂(1)
...

f̂(p− 1)




=




(ω0)0 ω0 · · · (ω0)p−1

(ω1)0 ω1 · · · (ω1)p−1

...
...

. . .
...

(ωp−1)0 ωp−1 · · · (ωp−1)p−1







f̂(0)

f̂(1)
...

f̂(p− 1)


 .

Hence, letting k = |A| = |B|, the matrix of T is some k × k minor of the matrix
above. But now letting the zi be the ith powers of ω for i ∈ A and letting nj = j
for all j ∈ B, we see that this matrix satisfies the hypotheses of Chebotarëv’s
lemma, and must therefore be invertible.

Theorem 11 (Tao, 2005). Let p be a prime number. If f : Zp → C is a nonzero
function, then

||f ||0 + ||f̂ ||0 ≥ p+ 1.

Conversely, if A and B are two nonempty subsets of Zp such that |A|+|B| ≥ p+1,

then there exists a function f such that supp(f) = A and supp(f̂) = B.

Proof. Suppose, for a contradiction, that f is such that ||f ||0+ ||f̂ ||0 ≤ p. Letting
A = supp(f), we can then find a set B with |B| = |A| that is disjoint from

supp(f̂). Now the Fourier transform of f restricted to B must be zero. But
applying the corollary with A and B, we see that T should have nonzero deter-
minant, which gives a contradiction since we have just found that Tf = 0 for
some f 6= 0.

Now we prove the converse. First let us handle the case where |A| + |B| =
p+1. In this situation we may choose A′ with |A′| = |A| such that A′ ∪B = Zp

and |A′ ∩ B| = 1; say A′ ∩ B = {x}. Now, apply the corollary with A and A′

to find that T : CA → CA′

is invertible. Letting g ∈ CA′

be a function with
g(x) 6= 0 and g(y) = 0 for all y ∈ A′ \{x}, we can find f ∈ CA such that Tf = g,

that is, the restriction of f̂ to A′ equals g. Now, since supp(f̂) ⊆ A′c ∪{x} = B,

we have ||f̂ ||0 ≤ |B| and then since supp(f) ⊆ A, we have ||f ||0 ≤ |A|. But in
order not to contradict what we proved in the previous paragraph, we must have
supp(f) = A and supp(f̂) = B.

Now assume that |A|+ |B| > p+ 1. Consider the set

S = {(A′, B′) : A′ ⊆ A,B′ ⊆ B, |A|+ |B| = p+ 1}.



12 THE DISCRETE FOURIER UNCERTAINTY PRINCIPLE

This set is finite, so let us index its elements (A1, B1), . . . , (As, Bs). From the
previous paragraph, there exist functions f1, . . . , fs such that for all 1 ≤ i ≤ s,
supp(fi) = Ai and supp(f̂i) = Bi. Now let

f = λ1f1 + · · ·λsfs

for some scalars λi ∈ C to be chosen later. It is clear that supp(f) ⊆ A and,

since the Fourier transform is linear, we also have supp(f̂) ⊆ B. This is true
regardless of our choices for the λi. Now we must prove that we can pick the λi

so that A ⊆ supp(f) and B ⊆ supp(f̂). For x ∈ A, let

Vx =
{
(λ1, . . . , λs) ∈ Cs :

s∑

i=1

λifi(x) = 0
}
.

This is a subspace of codimension 1 in Cs, since we have s degrees of freedom
and one nontrivial linear constraint. Similarly, for all x ∈ B, let

Wx =
{
(λ1, . . . , λs) ∈ Cs :

s∑

i=1

λif̂i(x) = 0
}
.

Now ⋃

x∈A

Vx ∪
⋃

x∈B

Wx

is a finite union of subspaces of codimension 1. Thus its complement is nonempty
and we can choose λ1, . . . , λs such that the resulting f has f(x) 6= 0 for all x ∈ A

and f̂(x) 6= 0 for all x ∈ B. This completes the proof.

8. The Cauchy–Davenport theorem

We now use Tao’s uncertainty principle for cyclic groups of prime order to prove
the Cauchy–Davenport theorem. First, we need to define the convolution of two
functions f, g : Z → C. This is denoted f ∗ g and given by

(f ∗ g)(x) = Ey+z=x f(y)g(z).

The following easy theorem describes the nice behaviour of convolutions under
Fourier transform.

Theorem C (Convolution law). Let Z be a finite abelian group and f, g : Z →

C. For all χ ∈ Ẑ, we have f̂ ∗ g(χ) = f̂(χ)ĝ(χ).

Proof. We expand

f̂ ∗ g(χ) = Ex∈Z(f ∗ g)(x)χ(x) = Ex∈Z Ey+z=x f(y)g(z)χ(y)χ(z).
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But note that x does not appear anywhere in the summand, so we can rewrite
this as an expectation over all y and z (their sum must equal x for some x ∈ Z).
So

f̂ ∗ g(χ) = Ey∈Z Ez∈Z f(y)χ(y)g(z)χ(z) = f̂(χ)ĝ(χ),

which is what we wanted.

Now let Z be a finite abelian group and let A and B be subsets of Z. We
define the sumset A+B to be the set of all sums a+ b where a ∈ A and b ∈ B.
This is related to the convolution operation above, since if supp(f) = A and
supp(g) = B, then supp(f ∗ g) ⊆ A + B. Also notice that the convolution law

gives supp
(
f̂ ∗ g

)
= supp(f̂) ∩ supp(ĝ).

Theorem 12 (Cauchy–Davenport theorem). Let A and B be nonempty subsets
of Zp. Then we have

|A+B| ≥ min
(
|A|+ |B| − 1, p

)
.

Proof. Since A is nonempty, we can build a nonempty set X ⊆ Zp with p+1−|A|
elements, so that Zp \ X has |A| − 1 elements. Then since B is nonempty, if
|X| + 1 > |B|, then we can pick Y ′ ⊆ X with |X| + 1 − |B| elements, and let
Y = Y ′ ∪ (Zp \X), so that

|Y | = p+ 1− |A|+ 1− |B|+ |A| − 1 = p+ 1− |B|.

If instead |X|+ 1 ≤ |B|, then we let Y ′ be any singleton subset of X and since
p− |X| ≥ p+ 1− |B| we can find a subset Y ′′ of Zp \X of size p− |B|. Letting
Y = Y ′ ∪ Y ′′, we also have |Y | = p+ 1− |B| in this case, and in both cases we
have

|X ∩ Y | = max
(
|X|+ 1− |B|, 1

)
= max

(
|X|+ |Y | − p, 1

)
.

Now since |A|+ |X| = |B|+ |Y | = p+ 1, by Tao’s uncertainty principle we

can find f : Zp → C with supp(f) = A and supp(f̂) = X, as well as g : Zp → C

with supp(g) = B and supp(ĝ) = Y . As we saw before, the convolution f ∗ g
has support contained in A+B and the support of its Fourier transform equals
X ∩ Y . By the other direction of Tao’s uncertainty principle, we must have

|A+B|+ |X ∩ Y | ≥ | supp(f ∗ g)|+
∣∣supp

(
f̂ ∗ g

)∣∣ ≥ p+ 1.

But since |X|+ |Y | − p = p+ 2− |A| − |B|,

|A+B| ≥ p+ 1−max
(
|X|+ |Y | − 1, 1

)
= min(|A|+ |B| − 1, p),

exactly what we wanted to show.
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