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By the fundamental theorem of arithmetic, any integer n > 1 may be expressed as a product of primes

n = pe11 pe22 · · · pekk ,

and this representation is unique up to the order of the factors. If none of the primes are repeated, i.e. each
exponent ei is at most 1, then we say that n is square-free. The Möbius function µ : N → {0,±1} is given
by

µ(n) =

{
1 if n = 1 or n is square-free and has an even number of prime factors;
−1 if n is square-free and has an odd number of prime factors; and
0 otherwise.

If two integers u, v have no prime factors in common (i.e. gcd(u, v) = 1), we say they are relatively prime
and write u ⊥ v. For any positive integer n, let qn denote the number of ordered pairs of integers (u, v) such
that 1 ≤ u, v ≤ n and u ⊥ v. Then the probability that any pair of integers u, v lying in the range [1 .. n] are
relatively prime is qn/n

2. Our goal is to find out what happens when u and v may be any positive integers.
In other words, we will investigate the behaviour of qn/n

2 as n → ∞. We begin with the following lemma:

Lemma A. For any positive integer n, we have

qn =
∑
k≥1

µ(k)
⌊n
k

⌋2
,

where the floor function ⌊x⌋ returns the largest integer that is no larger than x.

Proof. Let X denote the set of all ordered pairs (u, v) in the range 1 ≥ u, v ≥ n. Note that X contains n2

elements. For each prime number pi, let Spi
⊂ X denote the set of pairs (u, v) such that pi divides both u

and v. Since u ⊥ v if and only if no prime divides both u and v, the number of pairs (u, v) that lie in none
of the sets Spi is exactly qn. Thus

qn = |X \
∪
pi

Spi
|.

By the inclusion-exclusion principle, we can expand this to get

qn = |X| −
∑
pi

|Spi
|+

∑
pi<pj

|Spi
∩ Spj

| −
∑

pi<pj<pk

|Spi
∩ Spj

∩ Spk
|+ · · ·

qn = n2 −
∑
pi

⌊
n

pi

⌋2

+
∑
pi<pj

⌊
n

pipj

⌋2

−
∑

pi<pj<pk

⌊
n

pipjpk

⌋2

+ · · ·

where the sums are taken over all prime numbers.
First, notice that although each sum is taken over all prime numbers, each sum is actually finite due to

the floor function. From the uniqueness of prime decompositions, each positive integer k ≥ 1 appears in the
denominator of at most one term in the overall alternating sum. If k is not square-free, it does not appear
at all, since no term contains a repeated prime in its denominator. If the prime decomposition of k consists
of an odd number of distinct primes, then we see from the sum above that it contributes −⌊n/k⌋2 to the
sum. Finally, if k = 1 or k is the product of an even number of distinct primes, then it contributes +⌊n/k⌋2
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to the sum. This corresponds to the definition of the Möbius function. So we have qn =
∑

k≥1 µ(k)⌊n/k⌋2,
as we had hoped.

In the proof of the next result, we will employ notation that is useful when describing the asymptotic
behaviour of a function. Let f and g be functions such that g is strictly positive for large enough values of n.
We write f(n) = O

(
g(n)

)
if and only if there exist positive real numbers c and n0 such that |f(n)| ≤ c · g(n)

for n ≥ n0; and we write f(n) = o
(
g(n)

)
if and only if for all choices of positive real ϵ, there exists a real

n0 > 0 such that |f(n)| ≤ ϵ · g(n) for any n ≥ n0. Intuitively, f(n) being O
(
g(n)

)
means that as n gets very

large and omitting constant factors, f(n) grows no faster than g(n). The notation f(n) = o
(
g(n)

)
makes a

stronger statement, implying that as n gets very large, f(n) becomes insignificant relative to g(n).

Lemma B.

lim
n→∞

qn
n2

=
∑
k≥1

µ(k)

k2
.

Proof. To prove this limit, we will investigate the difference

qn −
∑
k≥1

µ(k)
(n
k

)2

=
∑
k≥1

µ(k)
⌊n
k

⌋2
−

∑
k≥1

µ(k)
(n
k

)2

.

Because ⌊n/k⌋ = 0 for k > n, the first summation on the right-hand side need only range up to k = n, and
we can reorganise the summations as follows:

∑
k≥1

µ(k)
⌊n
k

⌋2
−

∑
k≥1

µ(k)
(n
k

)2

=

n∑
k=1

µ(k)
⌊n
k

⌋2
−

n∑
k=1

µ(k)
(n
k

)2

−
∑
k>n

µ(k)
(n
k

)2

qn −
∑
k≥1

µ(k)
(n
k

)2

=

n∑
k=1

µ(k)

(⌊n
k

⌋2
−
(n
k

)2
)
−

∑
k>n

µ(k)
(n
k

)2

(1)

We will want to put asymptotic bounds on these rearranged sums. First, note that for all positive real x,

x2 − ⌊x⌋2 = O(x), (2)

for x2 −⌊x⌋2 can be rewritten (x+ ⌊x⌋)(x−⌊x⌋), which is less than 2x+1. Next, we use standard formulas
to analyse the asymptotic behaviour of the series

∑
k>n(n/k)

2:

∑
k>n

(n
k

)2

=
∑
k≥1

(n
k

)2

−
n∑

k=1

(n
k

)2

=
n2π2

6
− n2

(
π2

6
− 1

n
+O(n−2)

)
= n−O(1)

= O(n)

(3)

Since µ(k) ≤ 1, we can discard this factor when applying Eqs. (2) and (3) to get the asymptotic behaviour
of Eq. (1); this yields

qn −
∑
k≥1

µ(k)
(n
k

)2

=

n∑
k=1

O(n/k)−O(n)

= O(nHn)−O(n),

where Hn =
∑n

k=1 1/k denotes the n-th harmonic number. Because both O(nHn) and O(n) are o(n2), we
can replace these terms by o(n2) and divide by n2 to arrive at

qn
n2

−
∑
k≥1

µ(k)

k2
= o(1).
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This means that for any real ϵ > 0, we can find a number n0 such that for all n ≥ n0 the difference
|qn −

∑
k≥1 µ(k)/k

2| ≤ ϵ; the sequence qn/n
2 converges exactly as stated by the lemma.

We now know that qn/n
2 tends to the mysterious summation

∑
k≥1 µ(k)/k

2 as n approaches infinity.
Before we are able to compute the value of this summation, we need the following theorem, whose proof is
simple enough that it may be included as well.

Theorem M. The sum
∑

d\n µ(d), taken over all integers d that divide n, equals 1 when n = 1 and equals
0 for all integers n > 1.

Proof. The case n = 1 is obviously true, so let n > 1. By the fundamental theorem of arithmetic, n =
pe11 pe22 · · · pekk . Only square-free divisors contribute to the sum

∑
d\n µ(d), so we have

∑
d\n

µ(d) = µ(1) +
∑

1≤i≤k

µ(pi) +
∑

1≤i<j≤k

µ(pipj) + · · ·+ µ(p1 · · · pk).

Since the magnitude of µ(d) is 1 (whenever d is square-free) and the sign of µ(d) depends on the number of
primes that make up d, this can be re-expressed as the alternating sum of binomial coefficients

∑
d\n

µ(d) =

(
k

0

)
−
(
k

1

)
+

(
k

2

)
− · · ·+ (−1)k

(
k

k

)
= (1− 1)k = 0.

We are now ready for the final lemma.

Lemma C. (∑
k≥1

µ(k)

k2

)(∑
m≥1

1

m2

)
= 1.

Proof. Both series in the product are absolutely convergent, so we may make use of the identity(∑
k≥1

ak
kz

)(∑
m≥1

bm
mz

)
=

∑
n≥1

(∑
d\n

adbn/d

)/
nz,

setting ak = µ(k), bm = 1, and z = 2. This yields(∑
k≥1

µ(k)

k2

)(∑
m≥1

1

m2

)
=

∑
n≥1

(∑
d\n

µ(d) · 1
)/

n2.

As a result of Theorem M, the only non-zero term in the sum on the right-hand side occurs when n = 1, so
the product simplifies to µ(1)/12 = 1.

Since
∑

m≥1 1/m
2 = π2/6, we must have

∑
k≥1

µ(k)

k2
=

6

π2
≈ 60.8%,

and this is the probability that two random integers are relatively prime.
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