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If X is an integer-valued random variable and n is a positive integer, we might want to know the probability
that n divides X. To this end, we will make use of the probability generating function

p(z) =

∞∑
j=0

pjz
j .

We have the following result:

Theorem A. Let X be a nonnegative integer-valued random variable whose probability generating function
p(z) has radius of convergence R > 1. Let n be a positive integer and let ζ1, . . . , ζn denote the nth roots of
unity. The probability that n divides X is given by two equivalent formulas:

P
{
X ≡ 0 (mod n)

}
=

1

n

n∑
k=1

p(ζk) =
1

n

n∑
k=1

ℜ p(ζk)

Proof. Let pj = P{X = j} for all positive integers j. We are trying to compute the sum

p∗ = p0 + pn + p2n + · · · .

Consider the generating function

f(z) =

(
1 +

1

zn
+

1

z2n
+ · · ·

)
p(z).

For any multiple of kn of n, there is some term of the infinite sum that will pull pkn into the constant term
of f(z). So it is clear that [z0]f(z) = p0 + pn + p2n + · · · = p∗. We can rewrite f(z) as

f(z) =
p(z)

1− z−n
=

znp(z)

zn − 1
.

Letting g(z) = f(z)/z and applying Cauchy’s Integral Formula, the constant coefficient is given by

[z0]f(z) = [z−1]g(z) =
1

2πi

∮
g(z) dz,

where the path of integration is taken in the annulus of convergence. The function

g(z) =
zn−1p(z)

zn − 1

has only n singularities on the unit circle: a pole of order 1 at each of the n roots of unity. So we may take
our path of integration to be any positively-oriented loop around the origin that stays outside the closed
unit disk and inside the disk |z| < R. By the Residue Theorem, this is the sum of the residues at each of
the n poles, so we have

p∗ =
1

2πi

∮
g(z) dz =

1

2πi
· 2πi

(
Res(g; ζ1) + · · ·+Res(g; ζn)

)
.

∗ This is a generalisation of an assignment question given by Prof. Luc Devroye in his COMP 690 class, Fall 2020.
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We let g(z) = a(z)/b(z), and since a(z) = zn−1p(z) and b(z) = zn−1 are both holomorphic in neighbourhoods
around each of the poles, for any pole ζi of g we have

Res(g; ζk) =
a(ζk)

b′(ζk)
=

ζk
n−1p(ζk)

nζk
n−1 =

p(ζk)

n
.

Plugging the nth roots of unity into the formula, we have

p∗ =

n∑
k=1

Res(g; ζk) =

n∑
k=1

p(ζk)

n

Note if ζk is not real, then ζk is also an nth root of unity. Using the identity ℜz + ℜ(z) = (z + z), we find
that

p∗ =
1

n

n∑
k=1

p(ζk) =
1

n

n∑
k=1

ℜ p(ζk),

assuring us that p∗ is real and proving the theorem statement.
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