On the divisibility of a random variable*

by
Marcel K. Goh (Montréal, Québec)
11 SEPTEMBER 2020

If X is an integer-valued random variable and n is a positive integer, we might want to know the probability that n divides X. To this end, we will make use of the probability generating function

$$
p(z)=\sum_{j=0}^{\infty} p_{j} z^{j}
$$

We have the following result:
Theorem A. Let X be a nonnegative integer-valued random variable whose probability generating function $p(z)$ has radius of convergence $R>1$. Let n be a positive integer and let $\zeta_{1}, \ldots, \zeta_{n}$ denote the nth roots of unity. The probability that n divides X is given by two equivalent formulas:

$$
\mathbf{P}\{X \equiv 0(\bmod n)\}=\frac{1}{n} \sum_{k=1}^{n} p\left(\zeta_{k}\right)=\frac{1}{n} \sum_{k=1}^{n} \Re p\left(\zeta_{k}\right)
$$

Proof. Let $p_{j}=\mathbf{P}\{X=j\}$ for all positive integers j. We are trying to compute the sum

$$
p^{*}=p_{0}+p_{n}+p_{2 n}+\cdots
$$

Consider the generating function

$$
f(z)=\left(1+\frac{1}{z^{n}}+\frac{1}{z^{2 n}}+\cdots\right) p(z)
$$

For any multiple of $k n$ of n, there is some term of the infinite sum that will pull $p_{k n}$ into the constant term of $f(z)$. So it is clear that $\left[z^{0}\right] f(z)=p_{0}+p_{n}+p_{2 n}+\cdots=p^{*}$. We can rewrite $f(z)$ as

$$
f(z)=\frac{p(z)}{1-z^{-n}}=\frac{z^{n} p(z)}{z^{n}-1}
$$

Letting $g(z)=f(z) / z$ and applying Cauchy's Integral Formula, the constant coefficient is given by

$$
\left[z^{0}\right] f(z)=\left[z^{-1}\right] g(z)=\frac{1}{2 \pi i} \oint g(z) d z
$$

where the path of integration is taken in the annulus of convergence. The function

$$
g(z)=\frac{z^{n-1} p(z)}{z^{n}-1}
$$

has only n singularities on the unit circle: a pole of order 1 at each of the n roots of unity. So we may take our path of integration to be any positively-oriented loop around the origin that stays outside the closed unit disk and inside the disk $|z|<R$. By the Residue Theorem, this is the sum of the residues at each of the n poles, so we have

$$
p^{*}=\frac{1}{2 \pi i} \oint g(z) d z=\frac{1}{2 \pi i} \cdot 2 \pi i\left(\operatorname{Res}\left(g ; \zeta_{1}\right)+\cdots+\operatorname{Res}\left(g ; \zeta_{n}\right)\right)
$$

[^0]We let $g(z)=a(z) / b(z)$, and since $a(z)=z^{n-1} p(z)$ and $b(z)=z^{n}-1$ are both holomorphic in neighbourhoods around each of the poles, for any pole ζ_{i} of g we have

$$
\operatorname{Res}\left(g ; \zeta_{k}\right)=\frac{a\left(\zeta_{k}\right)}{b^{\prime}\left(\zeta_{k}\right)}=\frac{\zeta_{k}{ }^{n-1} p\left(\zeta_{k}\right)}{n \zeta_{k}^{n-1}}=\frac{p\left(\zeta_{k}\right)}{n} .
$$

Plugging the nth roots of unity into the formula, we have

$$
p^{*}=\sum_{k=1}^{n} \operatorname{Res}\left(g ; \zeta_{k}\right)=\sum_{k=1}^{n} \frac{p\left(\zeta_{k}\right)}{n}
$$

Note if ζ_{k} is not real, then $\overline{\zeta_{k}}$ is also an nth root of unity. Using the identity $\Re z+\Re(\bar{z})=(z+\bar{z})$, we find that

$$
p^{*}=\frac{1}{n} \sum_{k=1}^{n} p\left(\zeta_{k}\right)=\frac{1}{n} \sum_{k=1}^{n} \Re p\left(\zeta_{k}\right)
$$

assuring us that p^{*} is real and proving the theorem statement. 【

[^0]: * This is a generalisation of an assignment question given by Prof. Luc Devroye in his COMP 690 class, Fall 2020.

