# Answers to Selected Exercises in Principles of Mathematical Analysis* 

Solutions by

Marcel K. Goh

## CHAPTER 2. BASIC TOPOLOGY

1. Prove that the empty set is a subset of every set.

Proof. Let $S$ be an arbitrary set. Then every element of $\emptyset$ is an element of $S$. So $\emptyset \subseteq S$. I
2. A complex number $z$ is said to be algebraic if there are integers $a_{0}, \ldots, a_{n}$, not all zero, such that

$$
a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}=0 .
$$

Prove that the set of all algebraic numbers is countable. Hint: For every positive integer $N$, there are only finitely many equations with

$$
n+\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n}\right|=N
$$

Proof. Let $A$ denote the set of all algebraic numbers and partition $A$ as follows: For each $z \in A$, calculate the positive integer $N$ that corresponds to its equation and place it in a set $E_{N}$. So

$$
A=\bigcup_{N \in \mathbf{N}} E_{N},
$$

where each $E_{N}$ is finite. Then apply the corollary of Theorem 2.12 to find that $A$ is countable.
3. Prove that there exist real numbers which are not algebraic.

Proof. Let $A$ denote the set of all algebraic numbers and suppose, towards a contradiction, that all real numbers are algebraic. Then $\mathbf{R} \subseteq A$. But the set of real numbers is uncountable and we know from Problem 2 that $A$ is countable. The contradiction completes the proof.
4. Is the set of all irrational real numbers countable?

The answer is no.
Proof. If $\mathbf{R} \backslash \mathbf{Q}$ is countable, then $\mathbf{R}=\mathbf{Q} \cup(\mathbf{R} \backslash \mathbf{Q})$, is countable, which we know to be false.
5. Construct a bounded set of real numbers with exactly three limit points.
$\left\{\frac{1}{n}: n \in \mathbf{N}\right\} \cup\left\{\frac{1}{n}+2: n \in \mathbf{N}\right\} \cup\left\{\frac{1}{n}+4: n \in \mathbf{N}\right\}$ has limit points 0,2 , and 4. It is bounded above by 6 and below by 0 .

## CHAPTER 11. THE LEBESGUE THEORY

1. If $f \geq 0$ and $\int_{E} f d \mu=0$, prove that $f(x)=0$ almost everywhere on $E$. Hint: Let $E_{n}$ be the subset of $E$ on which $f(x)>1 / n$. Write $A=\bigcup_{n=1}^{\infty} E_{n}$. Then $\mu(A)=0$ if and only if $\mu\left(E_{n}\right)=0$ for every $n$.
Proof. First we claim that $\mu\left(E_{n}\right)=0$ for every $n$. Suppose, towards a contradiction, that $\mu\left(E_{n}\right)>0$ for some $n$. Then since $f(x)>1 / n$ for all $x \in E_{n}$, we find that

$$
\int_{E} f d \mu \geq \int_{E_{n}} f d \mu>\frac{\mu\left(E_{n}\right)}{n}>0,
$$

contradicting our hypothesis. Now since $\mu\left(E_{n}\right)=0$ for all $n, \mu(A) \leq \sum_{n=1}^{\infty} \mu\left(E_{n}\right)=0$. So $\mu(A)=0$. Now we write

$$
\int_{E} f d \mu=\int_{E \backslash A} f d \mu+\int_{A} f d \mu,
$$

and $f$ is equal to 0 on $E \backslash A$ by our construction of $A$.

[^0]
[^0]:    * Walter Rudin. 1986. Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, Inc., USA.

