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CHAPTER 2. BASIC TOPOLOGY

1. Prove that the empty set is a subset of every set.

Proof. Let S be an arbitrary set. Then every element of ∅ is an element of S. So ∅ ⊆ S.

2. A complex number z is said to be algebraic if there are integers a0, . . . , an, not all zero, such that

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0.

Prove that the set of all algebraic numbers is countable. Hint: For every positive integer N , there are only
finitely many equations with

n+ |a0|+ |a1|+ · · ·+ |an| = N

Proof. Let A denote the set of all algebraic numbers and partition A as follows: For each z ∈ A, calculate
the positive integer N that corresponds to its equation and place it in a set EN . So

A =
∪

N∈N

EN ,

where each EN is finite. Then apply the corollary of Theorem 2.12 to find that A is countable.

3. Prove that there exist real numbers which are not algebraic.

Proof. Let A denote the set of all algebraic numbers and suppose, towards a contradiction, that all real
numbers are algebraic. Then R ⊆ A. But the set of real numbers is uncountable and we know from Problem
2 that A is countable. The contradiction completes the proof.

4. Is the set of all irrational real numbers countable?

The answer is no.

Proof. If R \Q is countable, then R = Q ∪ (R \Q), is countable, which we know to be false.

5. Construct a bounded set of real numbers with exactly three limit points.

{ 1
n : n ∈ N} ∪ { 1

n + 2 : n ∈ N} ∪ { 1
n + 4 : n ∈ N} has limit points 0, 2, and 4. It is bounded above by 6

and below by 0.

CHAPTER 11. THE LEBESGUE THEORY

1. If f ≥ 0 and
∫
E
f dµ = 0, prove that f(x) = 0 almost everywhere on E. Hint: Let En be the subset of

E on which f(x) > 1/n. Write A =
∪∞

n=1 En. Then µ(A) = 0 if and only if µ(En) = 0 for every n.

Proof. First we claim that µ(En) = 0 for every n. Suppose, towards a contradiction, that µ(En) > 0 for
some n. Then since f(x) > 1/n for all x ∈ En, we find that∫

E

f dµ ≥
∫
En

f dµ >
µ(En)

n
> 0,

contradicting our hypothesis. Now since µ(En) = 0 for all n, µ(A) ≤
∑∞

n=1 µ(En) = 0. So µ(A) = 0. Now
we write ∫

E

f dµ =

∫
E\A

f dµ+

∫
A

f dµ,

and f is equal to 0 on E \A by our construction of A.
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