
Answers to Selected Exercises in Real and Complex Analysis∗

Solutions by

Marcel K. Goh

CHAPTER 1. ABSTRACT INTEGRATION

2. Put fn = χE if n is odd, fn = 1 − χE if n is even. What is the relevance of this example to Fatou’s
lemma?

This gives an example of strict inequality arising. Let X be a measure space such that µ(X) = 1 and
let E ⊆ X be such that µ(E) = 2/3. Then∫

X

lim inf
n→∞

fn dµ =

∫
X

0 dµ = 0,

while on the other hand

lim inf
n→∞

∫
X

fn dµ =

∫
X

1− χE dµ =

∫
X

1 dµ−
∫
X

χE dµ = µ(X)− µ(E) =
1

3
,

and we have 0 < 1/3.

3. Suppose fn : X → [0,∞] is measurable for n = 1, 2, 3, . . ., f1 ≥ f2 ≥ f3 ≥ · · · ≥ 0, fn(x) → f(x) as
n → ∞ for every x ∈ X, and f1 ∈ L1(µ). Prove that then

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ

and show that this conclusion does not follow if the condition “f1 ∈ L1(µ)” is omitted.

Proof. Consider the sequence of functions (f1 − fn). This sequence is nonnegative, nondecreasing and for
any x ∈ X, limn→∞(f1 − fn)(x) = f1(x)− f(x). So by the monotone convergence theorem,

= lim
n→∞

∫
X

f1 − fn dµ =

∫
X

f1 − f dµ.

Since the integrals of fn are finite, we can apply Theorem 1.27 to get∫
X

f1 dµ− lim
n→∞

∫
X

fn dµ =

∫
X

f1 dµ−
∫
X

f dµ,

which gives us what we want after subtracting
∫
X
f1 dµ (which is finite) and multiplying by −1.

The condition f1 ∈ L1(µ) is necessary. Let I = [0, 1] and fn = 1
nx2 , which converges to the constant

function 0. Then limn→∞
∫
I
fn dµ = +∞ but

∫
I
0 dµ = 0.

4. Prove that if f is a real function on a measurable space X such that {x : f(x) ≥ r} is measurable for
every rational r, then f is measurable.

Proof. We immediately infer that for rational r and s, f−1
(
[r, s)

)
is measurable, since

f−1
(
[r, s)

)
= {x : f(x) ≥ r} ∩ {x : f(x) ≥ s}c.
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Next, let I ⊆ R be an open interval. Setting J = I ∩Q, we can show that f−1(I) is measurable, since

f−1(I) = f−1

( ∪
r∈J

∪
s∈J

[r, s)

)
=

∪
r∈J

∪
s∈J

f−1
(
[r, s)

)
is a countable union of measurable sets.

Now let V ⊆ R be open. By Lindelöf’s lemma, we can express V as a countable union of open intervals
V =

∪∞
n=1 In. Then

f−1(V ) = f−1

( ∞∪
n=1

In

)
=

∞∪
n=1

f−1(In)

is measurable.

5. Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite
limit) is measurable.

Proof. Let (fn) be a sequence of real-valued measurable functions. Then (fn) converges at a point x if and
only if it is Cauchy at x, i.e. for any ϵ > 0 there exists N ∈ N such that for all m,n ≥ N , |fm(x)−fn(x)| < ϵ.
By the Archimedean property, we can replace ϵ with 1/k for some k ∈ N. So the set of all points at which
(fn) converges can be written thus:

∞∩
k=1

∞∪
N=1

∞∩
m=1

∞∩
n=1

{
x : |fm(x)− fn(x)| < 1/k

}
Set gm,n = fm − fn; this is a measurable function. Hence the set{

x : |fm(x)− fn(x)| < 1/k
}
=

{
x : |gm,n(x)| < 1/k

}
= gm,n

−1
(
(−1/k, 1/k)

)
is measurable for every m, n, and k. We have thus proved that the set of all points at which (fn) converges
is a countable union of measurable sets.

6. Let X be an uncountable set, let M be the collection of all sets E ⊆ X such that either E or Ec is at
most countable, and define µ(E) = 0 in the first case, µ(E) = 1 in the second. Prove that M is a σ-algebra
in X and that µ is a measure on M. Describe the corresponding measurable functions and their integrals.

First we prove that M is a σ-algebra and that µ is a measure.

Proof. Since ∅ is countable, X ∈ M. Then for any set E ∈ M, either E or Ec is at most countable; in
any case Ec ∈ M. Lastly, let {En} be a collection of sets in M. If every set En is at most countable,
then

∪∞
n=1 En is countable and thus in M. Otherwise, there is some k for which Ek is uncountable. Then

Ec
k ∈ M is at most countable and (

∪∞
n=1 En)

c
=

∩∞
n=1 E

c
n ⊆ Ec

k is countable, so
∪∞

n=1 En is in M. This
shows that M is a σ-algebra.

It is clear that the range of µ is in [0,∞]. To show that µ is countably additive, let {En} be a
disjoint collection of sets in M. If every En is at most countable, then

∪∞
n=1 En is at most countable and

µ(
∪∞

n=1 En) = 0 =
∑∞

n=1 µ(En). Otherwise, there exists Ek such that Ec
k is countable and thus we have

µ(Ek) = 1 and µ(Ec
k) = 0. Since the En are pairwise disjoint, En ⊆ Ec

k for all n ̸= k. So µ(En) = 0 for all
n ̸= k. So µ(

∪∞
n=1 En) = 1 =

∑∞
n=1 µ(En) and µ is a measure.

Now we claim that the measurable functions are those that are constant at all but countably many points.

Proof. It suffices to prove this for a real-valued function. Suppose f : X → [−∞,∞] is measurable. For any
a ∈ R, let Ea = f−1

(
[−∞, a)

)
. Note that for any a, either Ea is countable or Ec

a is countable. Note also
that if a ≤ b, then Ea ⊆ Eb. So let there is a constant c such that

k = sup{a : Ea is countable}.

This supremum is not −∞, since if it were, then Ec
a would be countable for all a ∈ R, and since

∩∞
n=0 E−n =

∅, X =
∩∞

n=0 E
c
−n is countable, a contradiction. By a similar argument, we know that the supremum is not
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∞. So k ∈ R and there exists a sequence (an) all of whose terms are less than k and whose limit is k. Hence
Ek =

∪∞
n=1 Ean is countable. Now let (bn) be a sequence that converges to k such that bn > k for all n.

Then note that if f(x) > k, then f(x) ∈ [bn,∞) = Ec
bn

for some n. So

{x : f(x) ̸= k} = Ek ∪ {x : f(x) > k} ⊆ Ek ∪
( ∞∪

n=0

Ec
bn

)
is countable and f equals k at all but countably many points.

Lastly, we show that if f is measurable and takes on the value k at all but countably many points, then∫
E
f dµ = k for all uncountable E ∈ M. (If E is countable then

∫
E
f dµ = 0.)

Proof. Let E ∈ M be uncountable; so µ(E) = 1. Let s be a simple measurable function such that 0 ≤ s ≤ f .
Suppose that s takes values αi on the n disjoint sets Ai that cover X. We know that one of the αi, call it αj ,
is equal to a constant ks and that Ai is at most countable for all i ̸= j. So for all i ̸= j, Ai ∩E is countable
and Aj ∩ E must be uncountable. Then we have

∫
E

s dµ =

n∑
i=1

αiµ(Ai ∩ E) = αjµ(Aj ∩ E) = ks · 1 = ks,

where 0 ≤ ks ≤ k. So we have∫
E

f dµ = sup
{∫

E

s dµ : 0 ≤ s ≤ f
}
= sup{ks : 0 ≤ s ≤ f} = k,

which is what we had to show.

7. Does there exist an infinite σ-algebra which has only countably many members?

The answer is no.

Proof. Let X be a ground set and let F be a σ-algebra (over X) with infinitely many members. First we
claim that we can always find a set E ̸= ∅ such that the set {F ∩ Ec : F ∈ F} is infinite. If this did not
hold, then take any E ̸= ∅ in F . Then by assumption, S1 = {F ∩Ec : F ∈ F} is finite and because Ec ∈ F ,
S2 = {F ∩ E : F ∈ F} is finite as well. Since any member of F can be expressed as a union of an element
of S1 with an element of S2, the implies that F is finite, a contradiction.

Now we may use the claim to construct a countable sequence of pairwise disjoint elements of F . Let G1

be the set E given by the claim. Now the infinite set S1 we constructed before is also a σ-algebra, so repeat
the argument to get a set G2, disjoint from G1. Continuing in this manner, we obtain a sequence G1, G2, . . .
where the Gi are pairwise disjoint. Now we see that the map from the power set of the natural numbers to
F given by

A 7→
∪
i∈A

Gi

is injective. So the uncountability of F follows from the uncountability of P(N).
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