Answers to Selected Exercises in Real and Complex Analysis*

Solutions by

Marcel K. Goh

CHAPTER 1. ABSTRACT INTEGRATION

2. Put $f_{n}=\chi_{E}$ if n is odd, $f_{n}=1-\chi_{E}$ if n is even. What is the relevance of this example to Fatou's lemma?

This gives an example of strict inequality arising. Let X be a measure space such that $\mu(X)=1$ and let $E \subseteq X$ be such that $\mu(E)=2 / 3$. Then

$$
\int_{X} \liminf _{n \rightarrow \infty} f_{n} d \mu=\int_{X} 0 d \mu=0
$$

while on the other hand

$$
\liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} 1-\chi_{E} d \mu=\int_{X} 1 d \mu-\int_{X} \chi_{E} d \mu=\mu(X)-\mu(E)=\frac{1}{3}
$$

and we have $0<1 / 3$.
3. Suppose $f_{n}: X \rightarrow[0, \infty]$ is measurable for $n=1,2,3, \ldots, f_{1} \geq f_{2} \geq f_{3} \geq \cdots \geq 0, f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for every $x \in X$, and $f_{1} \in L^{1}(\mu)$. Prove that then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

and show that this conclusion does not follow if the condition " $f_{1} \in L^{1}(\mu)$ " is omitted.
Proof. Consider the sequence of functions $\left(f_{1}-f_{n}\right)$. This sequence is nonnegative, nondecreasing and for any $x \in X, \lim _{n \rightarrow \infty}\left(f_{1}-f_{n}\right)(x)=f_{1}(x)-f(x)$. So by the monotone convergence theorem,

$$
=\lim _{n \rightarrow \infty} \int_{X} f_{1}-f_{n} d \mu=\int_{X} f_{1}-f d \mu
$$

Since the integrals of f_{n} are finite, we can apply Theorem 1.27 to get

$$
\int_{X} f_{1} d \mu-\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f_{1} d \mu-\int_{X} f d \mu
$$

which gives us what we want after subtracting $\int_{X} f_{1} d \mu$ (which is finite) and multiplying by -1 .
The condition $f_{1} \in L^{1}(\mu)$ is necessary. Let $I=[0,1]$ and $f_{n}=\frac{1}{n x^{2}}$, which converges to the constant function 0 . Then $\lim _{n \rightarrow \infty} \int_{I} f_{n} d \mu=+\infty$ but $\int_{I} 0 d \mu=0$.
4. Prove that if f is a real function on a measurable space X such that $\{x: f(x) \geq r\}$ is measurable for every rational r, then f is measurable.
Proof. We immediately infer that for rational r and $s, f^{-1}([r, s))$ is measurable, since

$$
f^{-1}([r, s))=\{x: f(x) \geq r\} \cap\{x: f(x) \geq s\}^{c}
$$

[^0]Next, let $I \subseteq \mathbf{R}$ be an open interval. Setting $J=I \cap \mathbf{Q}$, we can show that $f^{-1}(I)$ is measurable, since

$$
f^{-1}(I)=f^{-1}\left(\bigcup_{r \in J} \bigcup_{s \in J}[r, s)\right)=\bigcup_{r \in J} \bigcup_{s \in J} f^{-1}([r, s))
$$

is a countable union of measurable sets.
Now let $V \subseteq \mathbf{R}$ be open. By Lindelöf's lemma, we can express V as a countable union of open intervals $V=\bigcup_{n=1}^{\infty} I_{n}$. Then

$$
f^{-1}(V)=f^{-1}\left(\bigcup_{n=1}^{\infty} I_{n}\right)=\bigcup_{n=1}^{\infty} f^{-1}\left(I_{n}\right)
$$

is measurable. I
5. Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable.

Proof. Let $\left(f_{n}\right)$ be a sequence of real-valued measurable functions. Then $\left(f_{n}\right)$ converges at a point x if and only if it is Cauchy at x, i.e. for any $\epsilon>0$ there exists $N \in \mathbf{N}$ such that for all $m, n \geq N,\left|f_{m}(x)-f_{n}(x)\right|<\epsilon$. By the Archimedean property, we can replace ϵ with $1 / k$ for some $k \in \mathbf{N}$. So the set of all points at which $\left(f_{n}\right)$ converges can be written thus:

$$
\bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty}\left\{x:\left|f_{m}(x)-f_{n}(x)\right|<1 / k\right\}
$$

Set $g_{m, n}=f_{m}-f_{n}$; this is a measurable function. Hence the set

$$
\left\{x:\left|f_{m}(x)-f_{n}(x)\right|<1 / k\right\}=\left\{x:\left|g_{m, n}(x)\right|<1 / k\right\}=g_{m, n}^{-1}((-1 / k, 1 / k))
$$

is measurable for every m, n, and k. We have thus proved that the set of all points at which $\left(f_{n}\right)$ converges is a countable union of measurable sets.
6. Let X be an uncountable set, let \mathcal{M} be the collection of all sets $E \subseteq X$ such that either E or E^{c} is at most countable, and define $\mu(E)=0$ in the first case, $\mu(E)=1$ in the second. Prove that \mathcal{M} is a σ-algebra in X and that μ is a measure on \mathcal{M}. Describe the corresponding measurable functions and their integrals.
First we prove that \mathcal{M} is a σ-algebra and that μ is a measure.
Proof. Since \emptyset is countable, $X \in \mathcal{M}$. Then for any set $E \in \mathcal{M}$, either E or E^{c} is at most countable; in any case $E^{c} \in \mathcal{M}$. Lastly, let $\left\{E_{n}\right\}$ be a collection of sets in \mathcal{M}. If every set E_{n} is at most countable, then $\bigcup_{n=1}^{\infty} E_{n}$ is countable and thus in \mathcal{M}. Otherwise, there is some k for which E_{k} is uncountable. Then $E_{k}^{c} \in \mathcal{M}$ is at most countable and $\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}=\bigcap_{n=1}^{\infty} E_{n}^{c} \subseteq E_{k}^{c}$ is countable, so $\bigcup_{n=1}^{\infty} E_{n}$ is in \mathcal{M}. This shows that \mathcal{M} is a σ-algebra.

It is clear that the range of μ is in $[0, \infty]$. To show that μ is countably additive, let $\left\{E_{n}\right\}$ be a disjoint collection of sets in \mathcal{M}. If every E_{n} is at most countable, then $\bigcup_{n=1}^{\infty} E_{n}$ is at most countable and $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=0=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$. Otherwise, there exists E_{k} such that E_{k}^{c} is countable and thus we have $\mu\left(E_{k}\right)=1$ and $\mu\left(E_{k}^{c}\right)=0$. Since the E_{n} are pairwise disjoint, $E_{n} \subseteq E_{k}^{c}$ for all $n \neq k$. So $\mu\left(E_{n}\right)=0$ for all $n \neq k$. So $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=1=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$ and μ is a measure.

Now we claim that the measurable functions are those that are constant at all but countably many points.
Proof. It suffices to prove this for a real-valued function. Suppose $f: X \rightarrow[-\infty, \infty]$ is measurable. For any $a \in \mathbf{R}$, let $E_{a}=f^{-1}([-\infty, a))$. Note that for any a, either E_{a} is countable or E_{a}^{c} is countable. Note also that if $a \leq b$, then $E_{a} \subseteq E_{b}$. So let there is a constant c such that

$$
k=\sup \left\{a: E_{a} \text { is countable }\right\}
$$

This supremum is not $-\infty$, since if it were, then E_{a}^{c} would be countable for all $a \in \mathbf{R}$, and since $\bigcap_{n=0}^{\infty} E_{-n}=$ $\emptyset, X=\bigcap_{n=0}^{\infty} E_{-n}^{c}$ is countable, a contradiction. By a similar argument, we know that the supremum is not
∞. So $k \in \mathbf{R}$ and there exists a sequence $\left(a_{n}\right)$ all of whose terms are less than k and whose limit is k. Hence $E_{k}=\bigcup_{n=1}^{\infty} E_{a_{n}}$ is countable. Now let $\left(b_{n}\right)$ be a sequence that converges to k such that $b_{n}>k$ for all n. Then note that if $f(x)>k$, then $f(x) \in\left[b_{n}, \infty\right)=E_{b_{n}}^{c}$ for some n. So

$$
\{x: f(x) \neq k\}=E_{k} \cup\{x: f(x)>k\} \subseteq E_{k} \cup\left(\bigcup_{n=0}^{\infty} E_{b_{n}}^{c}\right)
$$

is countable and f equals k at all but countably many points.
Lastly, we show that if f is measurable and takes on the value k at all but countably many points, then $\int_{E} f d \mu=k$ for all uncountable $E \in \mathcal{M}$. (If E is countable then $\int_{E} f d \mu=0$.)
Proof. Let $E \in \mathcal{M}$ be uncountable; so $\mu(E)=1$. Let s be a simple measurable function such that $0 \leq s \leq f$. Suppose that s takes values α_{i} on the n disjoint sets A_{i} that cover X. We know that one of the α_{i}, call it α_{j}, is equal to a constant k_{s} and that A_{i} is at most countable for all $i \neq j$. So for all $i \neq j, A_{i} \cap E$ is countable and $A_{j} \cap E$ must be uncountable. Then we have

$$
\int_{E} s d \mu=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i} \cap E\right)=\alpha_{j} \mu\left(A_{j} \cap E\right)=k_{s} \cdot 1=k_{s}
$$

where $0 \leq k_{s} \leq k$. So we have

$$
\int_{E} f d \mu=\sup \left\{\int_{E} s d \mu: 0 \leq s \leq f\right\}=\sup \left\{k_{s}: 0 \leq s \leq f\right\}=k
$$

which is what we had to show. I
7. Does there exist an infinite σ-algebra which has only countably many members?

The answer is no.
Proof. Let X be a ground set and let \mathcal{F} be a σ-algebra (over X) with infinitely many members. First we claim that we can always find a set $E \neq \emptyset$ such that the set $\left\{F \cap E^{c}: F \in \mathcal{F}\right\}$ is infinite. If this did not hold, then take any $E \neq \emptyset$ in \mathcal{F}. Then by assumption, $\mathcal{S}_{1}=\left\{F \cap E^{c}: F \in \mathcal{F}\right\}$ is finite and because $E^{c} \in \mathcal{F}$, $\mathcal{S}_{2}=\{F \cap E: F \in \mathcal{F}\}$ is finite as well. Since any member of \mathcal{F} can be expressed as a union of an element of \mathcal{S}_{1} with an element of \mathcal{S}_{2}, the implies that \mathcal{F} is finite, a contradiction.

Now we may use the claim to construct a countable sequence of pairwise disjoint elements of \mathcal{F}. Let G_{1} be the set E given by the claim. Now the infinite set \mathcal{S}_{1} we constructed before is also a σ-algebra, so repeat the argument to get a set G_{2}, disjoint from G_{1}. Continuing in this manner, we obtain a sequence G_{1}, G_{2}, \ldots where the G_{i} are pairwise disjoint. Now we see that the map from the power set of the natural numbers to \mathcal{F} given by

$$
A \mapsto \bigcup_{i \in A} G_{i}
$$

is injective. So the uncountability of \mathcal{F} follows from the uncountability of $\mathcal{P}(\mathbf{N})$.

[^0]: * Walter Rudin. 1966. Real and complex analysis. McGraw-Hill, Inc., USA.

