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CHAPTER I: NUMBERS AND SETS

2. Mappings. Cardinality

1. For an arbitrary set A, prove that A ∼ A.

Proof. For each element a ∈ A, let φ(a) = a. It is easy to see that this is a one-to-one correspondence.

2. Given sets A and B, prove that A ∼ B implies B ∼ A.

Proof. Since A ∼ B, there exists a one-to-one correspondence φ from A onto B. Then φ−1 is a one-to-one
correspondence from B onto A.

3. For sets A, B, and C, prove that if A ∼ B and B ∼ C, then A ∼ C.

Proof. We have the existence of biunique mappings φ : A → B and ψ : B → C. Then ψφ is a one-to-one
correspondence from A to C (with ψ−1φ−1 as its inverse).

3. The Number Sequence

1. Let a property E be true, first for n = 3, and second for n+ 1 whenever it is true for n ≥ 3. Prove that
E is true for all numbers ≥ 3.

Proof. For a number k, let F denote the property “E is true for k+2”. Then E is true for all numbers n ≥ 3
if and only if F is true for all natural numbers k. We find that F is true for k = 1, since E is true for n = 3.
Then from the second statement about the property E, we can derive that also F is true for k+1 whenever
it is true for k ≥ 1. So by the principle of complete induction, we have F true for all natural numbers.

3. The same as Ex. 1 with the number 3 replaced by 0.

Proof. For a natural number k, let F denote the property “E is true for k − 1”. Then proceed as in the
solution to Exercise 1.

CHAPTER II: GROUPS

6. The Group Concept

1. The Euclidean motions of space combined with reflections (i.e. those transformations that preserve all
distances between pairs of points) form an infinite non-abelian group.

Proof. We work in 2-dimensional space, but most of the work generalises to higher dimensions. Any Euclidean
motion M can be described as one of the following:

a) a translation tPQ that takes a point P to a point Q;

b) a rotation sP (θ) of θ radians about the point P ;

c) a reflection rH where H is a hyperplane (line).

(Note that the same motion may be described in multiple ways. For example, if PQ and ST are par-
allel line-segments with the same length, then tPQ = tST .) The motion tPP that fixes every point satisfies
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the requirements of an identity element. Associativity follows from the fact that, for any point X in Eu-
clidean space, multiplication equates to composing motions. Thus (M1M2)M3(X) = M1

(

M2(M3(X))
)

=
M1(M2M3)(X); since the two motions act identically on every point in the space, they are the same trans-
formation. To see that every transformation has an inverse, we need only note that (tPQ)

−1 = tQP for all
points P and Q; (sP (θ))

−1 = sP (−θ) for all points P and choices of θ; and (rH)−1 = rH for every hyperplane
H . The group is not abelian because rotations do not commute with reflections in general.

2. Prove that the elements e, a form a group (abelian) if the group operation is defined by

ee = e, ea = a, ae = a, aa = e.

Proof. By inspection, we see that e is the identity element, and both elements are their own inverses.
Associativity may be checked by hand, examining all eight possible triples. And finally, the group is abelian
because ea = ae = a.

3. Construct a multiplication table for the group of all permutations on three digits.

Solution. For brevity, cycle notation is employed:

· () (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

() () (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1 2) (1 2) () (1 3 2) (1 2 3) (2 3) (1 3)
(1 3) (1 3) (1 2 3) () (1 3 2) (1 2) (2 3)
(2 3) (2 3) (1 3 2) (1 2 3) () (1 3) (1 2)
(1 2 3) (1 2 3) (1 3) (2 3) (1 2) (1 3 2) ()
(1 3 2) (1 3 2) (2 3) (1 2) (1 3) () (1 2 3)
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