Answers to Selected Exercises in Modern Algebra^{*}

Solutions by

MARCEL K. GOH

CHAPTER I: NUMBERS AND SETS

2. Mappings. Cardinality

1. For an arbitrary set A, prove that $A \sim A$.

Proof. For each element $a \in A$, let $\phi(a) = a$. It is easy to see that this is a one-to-one correspondence.

2. Given sets A and B, prove that $A \sim B$ implies $B \sim A$.

Proof. Since $A \sim B$, there exists a one-to-one correspondence ϕ from A onto B. Then ϕ^{-1} is a one-to-one correspondence from B onto A.

3. For sets A, B, and C, prove that if $A \sim B$ and $B \sim C$, then $A \sim C$.

Proof. We have the existence of biunique mappings $\phi : A \to B$ and $\psi : B \to C$. Then $\psi \phi$ is a one-to-one correspondence from A to C (with $\psi^{-1}\phi^{-1}$ as its inverse).

3. The Number Sequence

1. Let a property *E* be true, first for n = 3, and second for n + 1 whenever it is true for $n \ge 3$. Prove that *E* is true for all numbers ≥ 3 .

Proof. For a number k, let F denote the property "E is true for k+2". Then E is true for all numbers $n \ge 3$ if and only if F is true for all natural numbers k. We find that F is true for k = 1, since E is true for n = 3. Then from the second statement about the property E, we can derive that also F is true for k+1 whenever it is true for $k \ge 1$. So by the principle of complete induction, we have F true for all natural numbers.

3. The same as Ex. 1 with the number 3 replaced by 0.

Proof. For a natural number k, let F denote the property "E is true for k - 1". Then proceed as in the solution to Exercise 1.

CHAPTER II: GROUPS

6. The Group Concept

1. The Euclidean motions of space combined with reflections (i.e. those transformations that preserve all distances between pairs of points) form an infinite non-abelian group.

Proof. We work in 2-dimensional space, but most of the work generalises to higher dimensions. Any Euclidean motion M can be described as one of the following:

- a) a translation t_{PQ} that takes a point P to a point Q;
- b) a rotation $s_P(\theta)$ of θ radians about the point P;
- c) a reflection r_H where H is a hyperplane (line).

(Note that the same motion may be described in multiple ways. For example, if PQ and ST are parallel line-segments with the same length, then $t_{PQ} = t_{ST}$.) The motion t_{PP} that fixes every point satisfies

^{*} B. L. van der Waerden, *Modern Algebra*, translated by Fred Blum, New York: Ungar, 1949.

the requirements of an identity element. Associativity follows from the fact that, for any point X in Euclidean space, multiplication equates to composing motions. Thus $(M_1M_2)M_3(X) = M_1(M_2(M_3(X))) = M_1(M_2M_3)(X)$; since the two motions act identically on every point in the space, they are the same transformation. To see that every transformation has an inverse, we need only note that $(t_{PQ})^{-1} = t_{QP}$ for all points P and Q; $(s_P(\theta))^{-1} = s_P(-\theta)$ for all points P and choices of θ ; and $(r_H)^{-1} = r_H$ for every hyperplane H. The group is not abelian because rotations do not commute with reflections in general.

2. Prove that the elements e, a form a group (abelian) if the group operation is defined by

ee = e, ea = a, ae = a, aa = e.

Proof. By inspection, we see that e is the identity element, and both elements are their own inverses. Associativity may be checked by hand, examining all eight possible triples. And finally, the group is abelian because ea = ae = a.

3. Construct a multiplication table for the group of all permutations on three digits.

Solution. For brevity, cycle notation is employed:

•	() (12) (13) (23) (123) (132)	
()	() (12) (13) (23) (123) (132)	
(12)	(12) () (132) (123) (23) (13)	
(13)	$(1\ 3)\ (1\ 2\ 3) \ ()\ (1\ 3\ 2)\ (1\ 2)\ (2\ 3)$	
(23)	(23) (132) (123) () (13) (12)	
(123)	(123) (13) (23) (12) (132) $()$	
(132)	(132) (23) (12) (13) $()$ (123)	