## Answers to Selected Exercises in Modern Algebra*

Solutions by
Marcel K. Goh

## CHAPTER I: NUMBERS AND SETS

## 2. Mappings. Cardinality

1. For an arbitrary set $A$, prove that $A \sim A$.

Proof. For each element $a \in A$, let $\phi(a)=a$. It is easy to see that this is a one-to-one correspondence.
2. Given sets $A$ and $B$, prove that $A \sim B$ implies $B \sim A$.

Proof. Since $A \sim B$, there exists a one-to-one correspondence $\phi$ from $A$ onto $B$. Then $\phi^{-1}$ is a one-to-one correspondence from $B$ onto $A$.
3. For sets $A, B$, and $C$, prove that if $A \sim B$ and $B \sim C$, then $A \sim C$.

Proof. We have the existence of biunique mappings $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$. Then $\psi \phi$ is a one-to-one correspondence from $A$ to $C$ (with $\psi^{-1} \phi^{-1}$ as its inverse).

## 3. The Number Sequence

1. Let a property $E$ be true, first for $n=3$, and second for $n+1$ whenever it is true for $n \geq 3$. Prove that $E$ is true for all numbers $\geq 3$.

Proof. For a number $k$, let $F$ denote the property " $E$ is true for $k+2$ ". Then $E$ is true for all numbers $n \geq 3$ if and only if $F$ is true for all natural numbers $k$. We find that $F$ is true for $k=1$, since $E$ is true for $n=3$. Then from the second statement about the property $E$, we can derive that also $F$ is true for $k+1$ whenever it is true for $k \geq 1$. So by the principle of complete induction, we have $F$ true for all natural numbers.
3. The same as Ex. 1 with the number 3 replaced by 0.

Proof. For a natural number $k$, let $F$ denote the property " $E$ is true for $k-1$ ". Then proceed as in the solution to Exercise 1. I

## CHAPTER II: GROUPS

## 6. The Group Concept

1. The Euclidean motions of space combined with reflections (i.e. those transformations that preserve all distances between pairs of points) form an infinite non-abelian group.

Proof. We work in 2-dimensional space, but most of the work generalises to higher dimensions. Any Euclidean motion $M$ can be described as one of the following:
a) a translation $t_{P Q}$ that takes a point $P$ to a point $Q$;
b) a rotation $s_{P}(\theta)$ of $\theta$ radians about the point $P$;
c) a reflection $r_{H}$ where $H$ is a hyperplane (line).
(Note that the same motion may be described in multiple ways. For example, if $P Q$ and $S T$ are parallel line-segments with the same length, then $t_{P Q}=t_{S T}$.) The motion $t_{P P}$ that fixes every point satisfies

[^0]the requirements of an identity element. Associativity follows from the fact that, for any point $X$ in Euclidean space, multiplication equates to composing motions. Thus $\left(M_{1} M_{2}\right) M_{3}(X)=M_{1}\left(M_{2}\left(M_{3}(X)\right)\right)=$ $M_{1}\left(M_{2} M_{3}\right)(X)$; since the two motions act identically on every point in the space, they are the same transformation. To see that every transformation has an inverse, we need only note that $\left(t_{P Q}\right)^{-1}=t_{Q P}$ for all points $P$ and $Q ;\left(s_{P}(\theta)\right)^{-1}=s_{P}(-\theta)$ for all points $P$ and choices of $\theta$; and $\left(r_{H}\right)^{-1}=r_{H}$ for every hyperplane $H$. The group is not abelian because rotations do not commute with reflections in general.
2. Prove that the elements e, a form a group (abelian) if the group operation is defined by
$$
e e=e, \quad e a=a, \quad a e=a, \quad a a=e .
$$

Proof. By inspection, we see that $e$ is the identity element, and both elements are their own inverses. Associativity may be checked by hand, examining all eight possible triples. And finally, the group is abelian because $e a=a e=a$.
3. Construct a multiplication table for the group of all permutations on three digits.

Solution. For brevity, cycle notation is employed:

| $\cdot$ | () | $(12)$ | $(13)$ | $(23)$ | $(123)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdot$ | $(132)$ |  |  |  |  |
| () | () | $(12)$ | $(13)$ | $(23)$ | $(123)$ |
| $(132)$ | $(12)$ | () | $(132)$ | $(123)$ | $(23)$ |
| $(13)$ |  |  |  |  |  |
| $(13)$ | $(13)$ | $(123)$ | () | $(132)$ | $(12)$ |
| $(23)$ | $(23)$ | $(132)$ | $(123)$ | () | $(13)$ |
| $(12)$ | $(12)$ |  |  |  |  |
| $(123)$ | $(123)$ | $(13)$ | $(23)$ | $(12)$ | $(132)$ |
| $(132)$ | $(132)$ | $(23)$ | $(12)$ | $(13)$ | () |
|  |  |  | $(123)$ | I |  |


[^0]:    * B. L. van der Waerden, Modern Algebra, translated by Fred Blum, New York: Ungar, 1949.

