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1. INTRODUCTION

This set of notes assumes that the reader has had some exposure to linear algebra; the most crucial notions
are briefly outlined here. Next, the group axioms are introduced and some basic properties of groups are
given.

1.1. Basic Properties of Square Matrices

We shall mainly concern ourselves with matrices of the form a11 · · · a1n
...

. . .
...

an1 · · · ann


where n is some positive integer and each entry aij ∈ R. We call the set of all n × n matrices with real
entries Mn(R).

For two matrices A and B, we may form their sum A + B = (aij + bij). (This notation means that
at the ith row and jth column, the entry is the sum of aij and bij .) Given a real number α, we obtain the
scalar product αA = (α · aij) by multiplying every entry in A by α.

We can also multiply n× n matrices A and B with the following formula:

A ·B = (cij) where cij =

n∑
k=1

aik · bkj . (1)

Since a matrix represents a linear transformation, multiplying matrices is like composing functions. If S and
T are the transformations represented by the matrices B and A, respectively, then the matrix product A ·B
can be thought of as the following composition of transformations:

Rn S−→ Rn T−→ Rn

For matrices A and B the commutativity of addition

A+B = B +A (2)

is valid, and for three matrices A, B, and C, the distributive law

A · (B + C) = A ·B +A · C (3)

and the associativity of multiplication

A · (B · C) = (A ·B) · C (4)

may be proven to hold as well. In particular, (4) is laborious to prove from the definition given in (1), but
easy to derive when reasoning about matrices as transformations.

Unlike addition, multiplication is not commutative: A ·B does not equal B ·A in general. To prove this,
we simply note that(

0 1
0 0

)
·
(
0 0
0 1

)
=

(
0 1
0 0

)
but

(
0 0
0 1

)
·
(
0 1
0 0

)
=

(
0 0
0 0

)
.
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The matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is called the identity matrix and has the property that AI = IA = A for any matrix A. [When no ambiguity
can arise, we often omit the · symbol when denoting a product.]

We say that a matrix A is invertible if and only if there exists a matrix B such that AB = BA = I;
otherwise, it is called singular. Not all matrices are invertible. For example, the matrix 0, all of whose
entries are 0, is not invertible in any dimension. The identity matrix is easily seen to be invertible (take
B = I). Note that if an inverse matrix exists for a given matrix A, then it is unique, for if AB = AB′ = I
and B′A = BA = I, then, multiplying the first identity by B on the left, we arrive at BAB = BAB′, i.e.
B = B′.

Since a 1 × 1 matrix (a) contains only one real number, it is invertible if and only if a ̸= 0. A 2 × 2
matrix

(
a b
c d

)
is invertible if and only if ad− bc = 0, since for any such matrix,(

a b
c d

)(
d −c
−c a

)
=

(
ad− bc 0

0 ad− bc

)
,

and we can multiply both sides by 1/(ad − bc) to obtain the identity on the right, provided that ad − bc is
nonzero.

In general, there exists a function det : Mn(R)→ R such that a matrix A ∈Mn(R) is invertible if and
only if detA ̸= 0. This determinant can be calculated as a sum over n! terms; this formula will not be useful
for our purposes.

1.2. The General Linear Group

Let us now restrict our attention to a certain subset of square matrices, namely those whose determinant
is nonzero. This set is called the general linear group of degree n and is denoted GLn(R) when all matrix
entries are real numbers. Remark that, since (−1) + (1) = (0), this set is not closed under addition; scalar
multiplication is also no longer a safe operation, since multiplying any matrix by 0 results in a singular
matrix.

In return for these two forfeited closure properties, we get closure under matrix multiplication.

Proposition I. Suppose that two matrices A and B are invertible. Then their product AB is also invertible.

Proof. Consider B−1A−1 and the product (B−1A−1)(AB). By associativity of multiplication, this becomes
B−1(A−1A)B = B−1IB = IB−1B = II = I. Alternatively, use the fact that det(AB) = det(A) det(B),
which is nonzero because both det(A) and det(B) are nonzero.

Thus the set GLn(R), under the operation of matrix multiplication, has a multiplicative inverse A−1

for every matrix A. It also contains an identity element I and the multiplication operation is associative.
These are the properties of a group.

1.3. Groups

A group G is a set on which is defined a rule of combination such that the product of two elements g, h ∈ G,
denoted g · h or gh, is also in G. Furthermore, the following three properties must hold:

a) Multiplication must be associative: for all g, h, k ∈ G, (gh)k = g(hk).

b) There exists an identity element e ∈ G such that ge = eg = g for all g ∈ G. This element is also often
denoted 1.

c) For every element g ∈ G, there exists an inverse element g−1 such that gg−1 = g−1g = e.

An immediate consequence of the axioms is that the identity e is unique. For if both e and e′ are the
identity of a group, then e = ee′ = e′. Likewise, any element g has a unique inverse, in the sense that if two
elements h and h′ are both inverses of g, then

h = he = h(gh′) = (hg)h′ = eh′ = h′,
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and they were the same to begin with.
The term order serves a somewhat dual purpose in group theory. The order of a group G is the number

of elements it contains and this value, also denoted |G|, need not be finite. On the other hand, we define the
order of a group element g to be the smallest k > 0 such that gk = e. If no such k exists, then g is said to
have infinite order.

Probably the most familiar group is the set of all integers, denoted Z, under the operation of addition.
It has 1 as its identity, inverses −a for every whole number a, and the commutative property; likewise, any
vector space V is also a group under vector addition. The set of nonzero real numbers forms a group under
multiplication. In these examples, the binary operation has the property that for any g, h ∈ G, the products
gh and hg are equal. A group where this holds is called an abelian or commutative group. An example of a
non-abelian group is the group Q8 of quaternions with identity 1, governed by the identities (−1)2 = 1 and
i2 = j2 = k2 = ijk = −1. It has the following multiplication table:

1 −1 i −i j −j k −k

1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k

i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i

k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

The general linear group GLn(R) of invertible n × n matrices is another example of a non-abelian group,
whenever n > 1.

Group theory is intimately connected to the study of symmetries of an object. Let T be a set and let
Sym(T ) denote the set of all bijections from T to itself. This is called the symmetric group on T as, under
composition of functions, it obeys all the group axioms: It contains the identity transformation IdT and every
bijection f has an inverse bijection f−1. In some sense, the symmetric group is the most general group,
because all other groups arise from adding restrictions to these bijections. For instance, GLn(R) ⊆ Sym(Rn).

1.4. Permutation Groups

A bijection σ from a set T to itself is also called a permutation. We will focus on the case where T is finite
and we may simply number the elements of T = {1, . . . , n}. Then the set of permutations of T is denoted
Sn and called the symmetric group on n letters or, alternatively, the permutation group on n letters. An
element σ of this group may be explicitly presented in such a way that we see where each element is taken
to by σ:

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
It is easy to see that there are n! = n(n − 1)(n − 2) · · · 1 different permutations of n letters. There are n
choices for σ(1); subsequently there remain n− 1 choices for σ(2), n− 2 choices for σ(3) and so on until our
hand is forced for σ(n). So |Sn| = n!. Let us now consider the concrete example of the permutation

σ =

(
1 2 3 4 5 6 7
1 7 6 4 5 2 3

)
,

which is an element of S7. Notice that the elements 1, 4, and 5 are untouched by the permutation and
the remaining four items are permuted in the cycle 2 7→ 7, 7 7→ 3, 3 7→ 6, and 6 7→ 2. This suggests a
more concise notation for σ, since this cycle (2 7 3 6) completely determines the permutation. Notation-wise,
(2 7 3 6) denotes exactly the same cycle as (3 6 2 7); to avoid confusion, we usually select the one that starts
with the smallest number. Not every permutation is a cycle; for example the permutation

τ =

(
1 2 3 4
4 3 2 1

)
3
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cannot be represented as a single cycle. However, it contains two cycles, (1 4) and (2 3), so we can sim-
ply represent τ as (1 4)(2 3). When two cycles permute disjoint sets of elements, the cycles commute, so
(1 4)(2 3) = (2 3)(1 4). Every permutation can be represented as a product of disjoint cycles. The identity
permutation can be represented as a singleton cycle, e.g (1), but we will often simply denote it e or (). A
cycle that moves k elements is called a k-cycle; a 2-cycle is also called a transposition.

Every cycle can be expressed as a product of transpositions in the following manner:

(x1 x2 x3 . . . xn−1 xn) = (x1 x2)(x2 x3) · · · (xn−1 xn)

A consequence of this is that every permutation σ ∈ Sn can be expressed as a product σ = τ1τ2 · · · τk of
transpositions. We can classify permutations as even or odd depending on the parity of k. In particular,
the identity permutation () is a product of 0 cycles, so it is even. Thus the set of even permutations of n
elements has a group structure. It is called the alternating group on n letters and is denoted An. Because
the set An is a a subset of Sn and An is a group under the same binary operation that defines Sn, An is an
example of a subgroup.

1.5. Subgroups

Let G be a group. We call a nonempty subset H ⊆ G a subgroup and write H ≤ G provided that

a) The set H is closed under the multiplication operation of G.

b) Whenever H contains an element a ∈ G, H contains its inverse a−1 as well.

It is immediate from these requirements that a subgroup H contains the identity element. Since H
is nonempty, it contains an element h as well as its inverse h−1. Then from closure of multiplication we
conclude that hh−1 = e ∈ H.

We turn our attention to S3. This group is not commutative, since the elements σ = (1 2 3) and τ = (1 2)
do not commute. Multiplying στ we get (1 3) whereas the product τσ = (2 3).

Note that for k ≤ n, Sk ≤ Sn because we can simply fix the letters k+1, k+2, . . . , n. An easy corollary,
then, is that Sn does not commute for n ≥ 3. This is because S3 ≤ Sn and we can simply take σ and τ as
elements of the larger group Sn that do not commute.

Another example of a subgroup is the set of 2 × 2 matrices that stabilise the line y = 0 (vectors lying
on this line remain on this line after transformation). In terms of matrices, this set looks like

S =

{(
a c
0 d

)
: ad ̸= 0

}
.

Showing that this set is closed is a simple matter of computing(
a c
0 d

)(
a′ c′

0 d′

)
=

(
aa′ ac′ + cd′

0 dd′

)
,

and observing that the determinant of this matrix is nonzero since all of a, a′, d, d′ were assumed to be
nonzero. (Closure under inversion is also easily derived.)

It is not always easy to characterise all subgroups of a given group. For the additive group of integers,
however, the following proposition does so nicely.

Proposition S. The subgroups of Z under addition are precisely given by bZ, where b is a fixed integer.

Proof. First, we fix an integer b and show that bZ is a subgroup. Adding two integers bm + bn gives a
third integer b(m + n), which is also in bZ, so the set is closed under the operation of addition; likewise
−(bm) = b(−m), so the set is closed under additive inverse.

Now we must show that these bZ are all the possible subgroups. Let H ≤ Z. It is possible that H
contains only the identity 0, in which case H = 0Z. If not, let b be the smallest positive integer contained
in H. We know from closure that every multiple of b is in H, so bZ ⊆ H. Now let h be any element in H.
By the Euclidean division algorithm, we can divide h by b to get h = mb + r, where mb is some multiple
of b and r is a remainder lying in the range 0 ≤ r < b. Since r = (−mb) + h, we have r ∈ H. But then
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necessarily we have r = 0, since b is the smallest positive integer in H. So h is an integer multiple of b and
we have shown that H ⊆ bZ.

Finally, we introduce a specific class of subgroup. If G is a group with an element g, the cyclic subgroup
generated by g is the set

⟨g⟩ = {gm : m ∈ Z}.

This is a subgroup because gmgn = gm+n and (gm)−1 = g−m. Note that not all powers are distinct! For
example, in the group S3, the cyclic subgroup generated by τ contains only the identity element and τ itself.
If gm = e and m is the smallest positive integer for which this holds, we say that the order of g is m and
write |g| = m. If no such m exists, then we say g has infinite order.

If G is a group containing an element g such that ⟨g⟩ = G, then G is called cyclic or singly-generated.
More generally, if S ⊆ G and we let S−1 denote the set {s−1 : s ∈ S}, then the set

⟨S⟩ = {s1s2 · · · sn : n ∈ N, si ∈ S ∪ S−1}

is a subgroup of G, called the subgroup generated by S. If it so happens that ⟨S⟩ = G, then we way that S
is a generating set of G.

2. NORMAL SUBGROUPS AND HOMOMORPHISMS

2.1. Cosets and Normal Subgroups

Let H be a subgroup of a group G. For any g ∈ G, we can form a left coset of H by multiplying every
element of H by g on the left:

gH = {gh : h ∈ H}

Symmetrically, we could form a right coset Hg of H. Now we prove that the cosets partition the group G.

Lemma P. Let H be a subgroup of a group G. Then every element of G is in exactly one left coset of H.

Proof. Let g ∈ G be given. We commence by noting that since H contains the identity element e, the
element g is in at least one coset, namely gH. Now we show that any two cosets are either disjoint or equal.
Suppose aH and bH are two cosets that are not disjoint. This implies that there exist h1, h2 ∈ H such that
ah1 = bh2. We can manipulate this identity to obtain a−1b = h1h

−1
2 . So a−1b ∈ H. Then from closure

properties of subgroups, the cosets must be equal, since

aH = a(a−1bH) = (aa−1)bH = bH.

Thus g is in exactly one coset of H.

Any two cosets have the same size, namely the size of H, since the for any coset aH, the function
f : H → aH given by h 7→ ah establishes a bijection. This gives us some information about H, since it
induces a partition of G into equally-sized disjoint cosets. In fact, we have just proved the following famous
theorem:

Theorem L (Lagrange). Let H be a subgroup of a group G. Then the order of H must divide the order
of G.

Thus the value |G|/|H| is an integer; it is called the index of H in G and denoted [G : H]. Lagrange’s
theorem also tells us that, for any element g of a group G with order n, the order of the cyclic subgroup
⟨g⟩ must divide n, so the order of the element g divides n. Consequently, we know gn = e for any element
g ∈ G.

We now know that a subgroup H can partition a group G in two ways, namely into left cosets of the
form aH or into right cosets of the form Ha. Remark that in general, the left cosets do not equal the right
cosets. As an example, let H = {(), (1 2)} ≤ S3. Then we have

(1 3)H = {(1 3), (1 2 3)} ̸= {(1 3), (1 3 2)} = H(1 3).
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However, there do exist subgroups whose left cosets equal their right cosets. If N is a subgroup of a group
G with the property that aN = Na for all a ∈ G, then we call N a normal subgroup. Normal subgroups
have the property that the product of two cosets is itself a coset:

aH · bH = a ·Hb ·H = a · bH ·H = (ab) ·HH = (ab)H

Now we introduce the concept of conjugacy, which is closely intertwined with normal subgroups. For
elements a and b of a group G, we say a is conjugate to b if there exists an element g ∈ G such that gag−1 = b.
It is easy to see that this relation is reflexive (with g = e) and symmetric (replace any g with its inverse),
so it makes sense to say that a and b are conjugate elements of a group. We can also prove transitivity: If
there exists g ∈ G such that gag−1 = b and h ∈ G such that hbh−1 = c, then hgag−1h−1 = (hg)a(hg)−1 = c.
Thus conjugacy is an equivalence relation that partitions a group into conjugacy classes.

Given a group G and any set S of elements from G, we can conjugate the entire set by an element:

gSg−1 = {gsg−1 : s ∈ S

When the set S is a subgroup, the conjugate set will also be a subgroup, but not necessarily the same
subgroup S. It turns out that we can obtain an equivalent definition of normal subgroups in terms of
conjugacy.

Lemma C. Normal subgroups are exactly the subgroups that are stable under conjugation.

Proof. Let H be a normal subgroup of a group G. Let g ∈ G and h ∈ H be arbitrarily chosen. Since
gH = Hg, there is an element h′ ∈ H such that gh = h′g. Then we see that ghg−1 = h′, an element in H.
So we conclude that normal subgroups are stable under conjugation.

On the other hand, suppose H is a subgroup such that, for any g ∈ G and h ∈ H, ghg−1 ∈ H. Then
gHg−1 ⊆ H and we can conclude that gH ⊆ Hg. But g−1 is also an element of G, so we can apply our
hypothesis to get that g−1Hg ⊆ H and Hg ⊆ gH. So gH = Hg for all g ∈ G and H is normal.

Let G be a group, H a subgroup of G, and let S be a non-empty set of elements of G. The set of h ∈ H
such that hSh−1 = H is called the normaliser of S in H, denoted NH(S). The set of h ∈ H such that
hsh−1 = s for all s ∈ S is called the centraliser of S in H, denoted ZH(S). It is easy to check that these
are both subgroups of H. Note that if S consists only of one element, then the centraliser and normaliser
are equal and the inclusion ZH(S) ⊆ NH(S) always holds. If H = G, we may omit the subscript and simply
call the subgroups the normaliser and centraliser of S. It is clear that a subgroup H of G is normal if and
only if N(H) = G.

Theorem N. Let S be a set of elements of a group G. If H ≤ G, the index in H of the normaliser of S in
H, [H : NH(S)], is exactly the number of conjugates of S under H.

Proof. Write N = NH(S) for short and suppose that H is the disjoint union of cosets

H = N ∪ h1N ∪ · · · ∪ hkN,

where k = [H : NH(S)]. Now suppose that hi and hj are elements of H such that hiSh
−1
i = hjSh

−1
j . This is

true if and only if S = (h−1
j hi)S(h

−1
j hi)

−1. So h−1
j hi is in NH(S) = N and hi ∈ hjN . So two conjugates of

S are the same if and only if the conjugating elements belong to the same left coset of N . Thus [H : NH(S)]
is exactly the number of conjugates of S under H.

2.2. Simplicity of the Alternating Group

We take a brief detour to prove a famous result in the classification of groups, using only the basic techniques
we have learned so far. A group G is simple if its only normal subgroups are the trivial group {e} and the
whole group G. In this section we show that for n ≥ 5, the alternating group An is simple. First we establish
that the set of 3-cycles generate An.
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Lemma G. Every permutation in An can be written as a product of 3-cycles.

Proof. Since every permutation in An can be written as a product of an even number of transpositions, it
suffices to show that any product (a b)(c d) can be rewritten as a product of 3-cycles. There are three cases
to consider. Firstly, if the transpositions have two numbers in common, then (a b) = (c d) and the product
is simply the identity permutation. If the transpositions have a single point in common, then the product is
a 3-cycle, since (a b)(b c) = (a b c). Lastly, in the case that all four points are distinct, we have

(a b)(c d) = (a b c)(b c d),

a product of 3-cycles. Hence the set of 3-cycles generates An.

In fact, we can shrink the generating set to 3-cycles of a specific form.

Lemma H. The n− 2 permutations (1 2 3), (1 2 4), . . . , (1 2n) generate An.

Proof. By Lemma G, we need only show that any 3-cycle can be rewritten as a product of cycles (1 2 k). Since
the square of (1 2 k) is (2 1 k), any cycle that contains both 1 and 2 can be generated by the permutations
above. Then, note that any cycle (a b c) that fixes 1 can be rewritten (1 a b)(1 b c). Now we can rewrite each
of these cycles as follows:

(1 j k) = (1 2 k)(1 2 k)(1 2 j)(1 2 k)

So every 3-cycle can be expressed as a product of cycles of the form (1 2 k).

This result can be used to show that any normal subgroup of An that contains a 3-cycles is necessarily
the whole group An.

Lemma K. Let n ≥ 4 and let N be a normal subgroup of the group An. If N contains a 3-cycle, then
N = An.

Proof. Without loss of generality, suppose that N contains the cycle (1 2 3). Then it also contains its inverse
(2 1 3) and for any σ ∈ An,

σ(2 1 3)σ−1 ∈ N.

So let σ = (1 2)(3 k) for k ≥ 4 and we have

σ(2 1 3)σ−1 = (1 2 k).

By Lemma H, these generate An, so N is the entire group.

We may finally prove that An is simple for n ≥ 5. The following theorem is due to E. Galois.

Theorem S. Let n ≥ 5 and let N ≥ An be non-trivial. Then N = An.

Proof. Let τ ∈ N be a non-identity permutation that fixes as many symbols as possible. We will show, by
contradiction, that τ must be a 3-cycle, i.e. it fixes all symbols except three.

Suppose that τ moves more than three symbols. Then either τ has a cycle with more than three symbols,
or τ consists of disjoint transpositions. Without losing generality, we use the symbols 1, 2, 3, 4, and 5. In
the first case, we have

τ = (1 2 3 . . .) . . .

and we can conjugate by (3 4 5) to get

τ ′ = (3 4 5)τ(3 4 5)−1 = (1 2 4 . . .) . . . .

Then τ−1τ ′ fixes 1 where τ did not, a contradiction.
In the case that τ only contains transpositions, we have

τ = (1 2)(3 4) . . . ,

7
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and again we conjugate by (3 4 5) to get

τ ′ = (3 4 5)τ(3 4 5)−1 = (1 2)(4 5) . . .) . . . .

Then τ−1τ ′ fixes 1 and 2 and τ does not, leading to a contradiction.
The contradiction in both cases implies that τ moves three symbols or less. In the alternating group,

this implies that τ is a 3-cycle. So N contains a 3-cycle and by Lemma K, N = An.

With this theorem in hand, it becomes easy to check that A4 is the only alternating group that possesses
a normal subgroup.

2.3. Isomorphisms and Homomorphisms

Consider the group G1 = {±1,±i} under complex multiplication alongside the group G2 = ⟨ρ⟩ ≤ S4, where ρ
is the permutation that takes 1 7→ 2, 2 7→ 3, 3 7→ 4, and 4 7→ 1. The groups have the following multiplication
tables:

G1:

1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

G2:

e ρ ρ2 ρ3

e e ρ ρ2 ρ3

ρ ρ ρ2 ρ3 e
ρ2 ρ2 ρ3 e ρ
ρ3 ρ3 e ρ ρ2

It doesn’t take long to realise that these two multiplication tables are the same, up to relabeling 1 ≡ e, i ≡ ρ,
−1 ≡ ρ2, and −i ≡ ρ3. This is an example of the concept of isomorphisms between groups.

Formally, an isomorphism is a bijection f : G→ G′ from a group to another such that

f(x · y) = f(x) · f(y).

The multiplication on the left-hand side is taking place in G while the right-hand multiplication takes place
in G′. In the above example, the function f : G1 → G2 that takes ik 7→ ρk for k = 0, 1, 2, 3 gives an explicit
isomorphism. If there exists an isomorphism between two groups G and H, we say that they are isomorphic
and write G ≃ H.

Any two cyclic groups of order n are isomorphic. We will not formally prove this, but it is clear that
if G1 and G2 are cyclic groups of the same order generated by g1 and g2 respectively, then the function
f : G1 → G2 given by f(g1

k) = g2
k for any integer k will be a well-defined isomorphism.

As a perhaps surprising example, the group of real numbers under addition and the group of positive
real numbers under multiplication are isomorphic to one another. The function f(x) = ex is a bijection from
R to R+ and ex+y = exey for real numbers x and y.

If two groups G1 and G2 are isomorphic, then

a) The groups have the same order, i.e. |G1| = |G2|.
b) Either G1 and G2 are both abelian or they are both non-abelian.

c) Both groups have the same number of elements of every order.

These properties are useful in showing that two groups are not isomorphic. For example, S3 has no
element of order 6, so it is not isomorphic to the cyclic group of order 6, which has two such elements: 1 and
5.

We may obtain a generalisation of an isomorphism by relaxing the requirement that the function be
bijective. Any map f : G1 → G2 between groups that satisfies f(x · y) = f(x) · f(y) for all x, y ∈ G1 is called
a homomorphism, and an isomorphism is simply a bijective homomorphism. It follows from the definition
that any homomorphism maps the identity of the first group to the identity of the second, and that inverses
are mapped to inverses. The simplest example of a homomorphism is the trivial homomorphism that maps
every element of G1 to the identity of G2. Another homomorphism that is not an isomorphism is the map
from Z to S2 that takes all even integers to the identity and all odd integers to the permutation that switches
1 and 2.
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2.4. The Isomorphism Theorems

Let f : G → H be a homomorphism. The kernel of f , denoted ker(f), is a the set of all elements in the G
that map to the identity eH of the target group H. The image of f , denoted Im(f), is the set of all elements
in H that equal f(g) for some g ∈ G. In particular, the homomorphism f is an isomorphism if and only if
ker(f) = {e} and Im(f) = G. It is an easy exercise to verify that ker(f) and Im(f) are always subgroups of
G and H respectively.

Now we want to describe the preimages of Im(f). For each element h ∈ Im(f) ≤ H, the subset
{g : f(g) = h} is its fibre. The following lemma establishes that the kernel of a homomorphism is normal
and relates the fibres of the image to cosets of the kernel. Since the image of a homomorphism is a subgroup,
we can assume that the homomorphism is surjective without losing generality.

Lemma F (Fibre lemma). Let f : G→ H be a surjective group homomorphism with kernel K. Then for
any h ∈ H and g ∈ G that satisfies f(g) = h, we have f−1(h) = gK = Kg, implying that K is a normal
subgroup of G.

Proof. Let h ∈ H and let X denote f−1(h), the fibre of h. Now take g ∈ G such that f(g) = h. Since
f(k) = eH for all k ∈ K, we have f(sk) = f(s)f(k) = h = f(k)f(s) = f(ks). So sK ⊆ X and Ks ⊆ H.
To prove the reverse inclusions, we let x ∈ X (so f(x) = h). Then since f is a homomorphism, we have
f(g−1) = h−1 and

f(xg−1) = f(x)f(g−1) = hh−1 = eH = h−1h = f(g−1)f(x) = f(g−1x).

This implies that xg−1 ∈ K, so multiplying on the right by g, we find that x ∈ Kg. Similarly, g−1x ∈ K so
x ∈ gK.

Now for any surjective map f from sets G to H, we can define an equivalence relation on elements
a, b ∈ G:

a ∼ b if and only if f(a) = f(b)

The set of equivalence classes is denoted G/∼ and there exists a bijection f ′ : G/∼ → H. Now if f is a
group homomorphism, then we can pull back the group structure of H to G/∼ using the bijection. Then
the set

G/K = {gK : g ∈ G}.

has a group structure and is called the quotient group. Multiplication in the quotient group is given by
gK ·hK = (g ·h)K, which is well-defined because K is normal. So the group structure of G/K depends only
on the kernel K and not the homomorphism that induced it. The following theorem sums up what we have
discovered so far.

Theorem I (First Isomorphism Theorem). Let f : G → H be a surjective group homomorphism. Then
K = ker(f) is a normal subgroup of G and there exists a group isomorphism f ′ : G/K → H.

This result is fundamental and is often used in conjunction with other laws of homomorphisms to
establish isomorphisms. The other two isomorphism theorems provide further insight into the properties of
group homomorphisms.

Theorem J (Second Isomorphism Theorem). Let G be a group with subgroups A and B. Suppose that
A ≤ NG(B). Then AB is a group and B is a normal subgroup of AB. Then there exists a surjective
homomorphism f : A→ AB/B with kernel A ∩B, given by f(a) = aB.

Proof. First we show that AB is a group. Since A ≤ NG(B), for any product a1b1a2b2, we can find b′ ∈ B
such that a2b

′ = b1a2. Then a1b1a2b2 = a1a2b
′b2 ∈ AB. Similarly, AB is stable under inverses, since for any

product ab, we can find b′ ∈ B such that (ab)−1 = b−1a−1 = a−1b′. Because both A and B are subgroups of
NG(B), so is AB and in particular, B is a normal subgroup of AB. Then f : A→ AB/B is the restriction
of the quotient map AB → AB/B to A, so it is surjective.

Now let a ∈ ker(f). By definition, f(a) = aB = B, so a ∈ B. Thus a ∈ A ∩ B. Now let a ∈ A ∩ B.
Then aB = B so a ∈ ker(f). Thus ker(f) = A∩B. In fact, we can now apply the first isomorphism theorem
to deduce that A/ ker(f) ∼= AB/B.
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Theorem K (Third Isomorphism Theorem). Suppose that A ≤ B ≤ G is a chain of subgroups and
furthermore, both A and B are normal subgroups of G. Then the kernel of the surjective homomorphism
f : G/A→ G/B is B/A.

Proof. The homomorphism f is well defined, since if sA = tA, then t−1s ∈ A, implying that t−1s ∈ B and
sB = tB. It is also surjective, since for any sB ∈ G/B, we have sA ∈ G/A and f(sA) = sB.

Now let sA ∈ ker(f). We have f(sA) = sB = B, so s ∈ B. This means that sA ∈ B/A. Conversely, if
s ∈ B then f(sA) = sB = B. So ker(f) = B/A and by the first isomorphism theorem, we can express this
as the isomorphism (G/A)/(B/A) ∼= G/B.

[Include correspondence theorem.]

3. AUTOMORPHISMS

An isomorphism from a group to itself is called an automorphism. Given a group G, we can construct a set
Aut(G) of all automorphisms of G and in fact, it is easily verifiable that Aut(G) is a group under function
composition.

3.1. Inner and Outer Automorphisms

For any element a of a group G, the map fa defined by

fa(s) = asa−1

is an automorphism. Such automorphisms, which conjugate the group by a fixed element, are called inner
automorphisms. An automorphism that is not inner is called an outer automorphism. There is a homomor-
phism ϕ : G→ Aut(G) given by a 7→ fa; that is, fafb = fab. This follows from associativity:

fafb(s) = a(bsb−1)a−1 = (ab)s(ab)−1 = fab(s)

The image of the homomorphism ϕ is denoted Inn(G).
The centre of a group G is defined as the centraliser of G in itself:

Z(G) = {z ∈ G : zg = gz for all g ∈ G}.

Lemma Z. The centre of G is the kernel of the map from G to Aut(G) given by a 7→ fa.

Proof. Let a ∈ Z(G) and note that for an arbitrary element s ∈ G,

fa(s) = asa−1 = aa−1s = s

so fa is the identity automorphism. Likewise, if some fa ∈ Aut(G) is the identity automorphism, then
fa(s) = asa−1 = s for all s ∈ G. So as = sa for all s ∈ G and a ∈ Z(G).

From Lemma 2.4.C, we know that normal subgroups are exactly the subgroups that are stable under
conjugacy, i.e. stable under inner automorphism. We can extend this into a more general definition. If
H ≤ G and f(H) = H for all f ∈ Aut(G), then we say that H is a characteristic subgroup. (Of course,
every characteristic subgroup is also normal.)

Lemma C. The centre Z(G) of a group G is characteristic.

Proof. It must be shown that if g ∈ Z(G), then for all f ∈ Aut(G), f(g) ∈ Z(G). We prove this by
contraposition. Let g ∈ G and suppose there exists f ∈ Aut(G) such that f(g) /∈ Z(G). Then there exists
s ∈ G such that f(g) · s ≠ s · f(g). Now we apply the inverse automorphism f−1 to both sides to get that
g · f−1(s) ̸= f−1(s) · g. Hence there exists an element of G, namely f−1(s), that g does not commute with,
so g /∈ Z(G).

By the first isomorphism theorem, Inn(G) ≃ G/Z(G); in particular, if G is abelian, we have Z(G) = G
and Inn(G) is trivial. Because it arose as the image of a group homomorphism ϕ, we know that Inn(G) ≤
Aut(G). In fact, we can prove that Inn(G) is normal in Aut(G).
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Lemma N. Let G be a group. Then Inn(G) is a normal subgroup of Aut(G).

Proof. Let fa ∈ Inn(G) be the map that conjugates by an element a ∈ G. Let g ∈ Aut(G) be arbitrary.
Then

g ◦ fa ◦ g−1 = g(a · g−1(s) · a−1) = g(a) · s · g(a)−1,

and we see that g ◦ fa ◦ g−1 = fg(a) ∈ Inn(G). So Inn(G) is stable under conjugation in Aut(G).

Now by the first isomorphism theorem, we have a group Out(G) = Aut(G)/ Inn(G), called the outer
automorphism group. Note that this is not the set of outer automorphisms! (The set of outer automorphisms
do not form a group because the identity automorphism is inner.)

?.? Structure of Abelian Groups

[Under construction.]

?.?. Group Actions on Sets

Let G be a group and S a set of elements. We say that G acts on S if there exists a map from G× S → S
(whose pairs (g, s) are written g(s) or gs) such that, for all s ∈ S, es = s and (gh)s = g

(
hs

)
for every

g, h ∈ G. For any element s ∈ S, the orbit is set of elements in S to which s may be taken by G:

Gs = {gs ∈ S : g ∈ G}

If there exists an s such that Gs = S, then we say that G acts transitively on S. In fact, because the orbits
of a group action partition the set S into equivalence classes, transitivity of a group action implies there is
only one orbit, and for any s, s′ ∈ S, there exists some g ∈ G such that gs = s′.

The stabiliser of s is the set of all elements in G that leave s fixed:

Stab(s) = {g ∈ G : gs = s}

Consider a model example of a transitive action. Let G be a group with a subgroup H ≤ G; let S be
the set {aH : a ∈ G} of left cosets of H. The group G acts on S by taking a coset aH to gaH. This action
is transitive: For any a, a′, there exists some g such that g(a) = a′, so we can take any aH to a′H via g as
well. The closure property of subgroups gives us GH = H, and the stabiliser of an arbitrary coset aH is the
set {g ∈ G : gaH = aH}. We find that this is exactly the conjugate subgroup aHa−1. More generally, if G
acts transitively on a set S and gs = s′, then Stab(s′) = g Stab(s)g−1 ⊆ G.

We can equivalently describe a group action of G on a set S as a homomorphism from G to Sym(S). If
this map is injective, we say the action is faithful. Most group actions that we will study are faithful, and a
very simple one is given by the following theorem.

Theorem C (Cayley). Let G be a finite group. Then G is isomorphic to a subgroup of Sym(G).

Proof. For every element g of G, let σg : G← Sym(G) be given by x 7→ gx. The map σg is injective, since in
G, g1x = g2x implies that g1 = g2. For any given x ∈ G, we have σg(g

−1x) = x, so the map is also surjective.
Then we also have σgh(x) = (gh)x = g(hx) = σg(σh(x)) = (σg ◦ σh)(x), establishing the isomorphism.

The injection from G to Sym(G) is faithful, since if σg1 = σg2 , then σg1(e) = g1e = g2e = σg2(e), and
g1 = g2. We also observe that σe is the identity permutation. This action of a group G on itself is called the
left Cayley action or left regular action. We could also have described an isomorphism given by g 7→ (x 7→ g),
but this does not give a homomorphism since now, σgh = σh ◦ σg. This can be mended by letting σg be
given by σg(x) = xg−1. This is called the right regular action.

Suppose that a group G acts on itself by conjugation:

s 7→ gsg−1.

Then the orbit of an element s is its conjugacy class and its stabiliser is its centraliser. Let H denote the set
of all subgroups of G. Then G also acts on H by conjugation: g(H) = gHg−1. In this action, the stabiliser
of a subgroup H is N(H), its normaliser.
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?.?. The Sylow Theorems

Lagrange’s Theorem, presented in Section 2.4, states that if G is a group with |G| = n, then the order of
any element of G divides n. The converse of this theorem does not hold: There does not necessarily exist
a subgroup with size m for all m dividing n. For example, A4 has no subgroup of order 6. However, the
results of this section provide a partial converse to Lagrange’s Theorem. To this end, we first introduce the
concept of double cosets.

Let H and K be subgroups, not necessarily distinct, of a group G. For a fixed element g of G, the set

HgK = {hgk : h ∈ H and k ∈ K}

is called a double coset.
First we show that, just like ordinary cosets, double cosets partition a group. First, every element g of

a group belongs to some double coset of H and K, namely HgK. Then we have the following lemma:

Lemma D. Let H and K be subgroups of a group G. For elements x, y ∈ G, the cosets HxK and HyK
are either equal or disjoint.

Proof. If HxK and HyK are not disjoint, then we can find g ∈ HxK ∩HyK. Suppose that g = h1xk1 =
h2yk2; so x = h−1

1 h2yk2k
−1
1 and y = h−1

2 h1xk1k
−1
2 . Then for any hxk ∈ HxK,

hxk = hh−1
1 h2yk2k

−1
1 k,

meaning that HxK ⊆ HyK. Likewise,

hyk = hh−1
2 h1xk1k

−1
2 k

and HyK ⊆ HxK.

A double coset HgK contains left cosets of K that are of the form (hg)K as well as right cosets of H
of the form H(gk). In fact, we can calculate the exact quantity of such left and right cosets.

Lemma Q. The number of right cosets of H in HgK is [gKg−1 : H ∩ gKg−1] and the number of left cosets
of K in HgK is [H : H ∩ gKg−1].

Proof. We form a bijection f : HgK → HgKg−1 that takes an element hgk to hgkg−1. This creates a
correspondence between left cosets h(gKg−1) of gKg−1 and left cosets (hg)K ofK as well as a correspondence
between right cosets H(gkg−1) of H and right cosets H(gk) of H in HgK.

Let D = (H ∩ gKg−1) ≤ gKg−1. Then gKg−1 can be written as a union of disjoint right cosets

gKg−1 = D ∪Dx2 ∪ · · · ∪Dxn,

where n = [gKg−1 : D]. Each xi belongs to gKg−1 and the claim is that H,Hx2, . . . , Hxn are exactly the
right cosets of H that are in HgK. These cosets are distinct since if Hxi = Hxj , then xix

−1
j ∈ H, but

since both xi and xj are in gKg−1, this means that xix
−1
j ∈ D and Dxi = Dxj , contradicting our choice

of coset representatives. Now every right coset of H in HgKg−1 is of the form Hx, where x = dxi for
some d ∈ D. But since D ⊆ H, Hx = Hdxi = Hxi. So the number of right cosets of H in HgKg−1 is
[gKg−1 : D] = [gKg−1 : H ∩ gKg−1] and by the bijection above, this is the number of right cosets of H in
HgK.

In a similar manner, it can be shown that the number of left cosets of gKg−1 in HgKg−1 is [H : D] =
[H : H ∩ gKg−1] and this is exactly the number of left cosets of K in HgK.

So much for double cosets. We saw earlier that if n is the order of a group G and d divides n, there
does not necessarily exist a subgroup of order d. However, if d is prime or a power of a prime, then there is
such a subgroup. We begin with a useful theorem, due to Cauchy.
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Theorem C (Cauchy). If G is a group that has order dividing a prime p, then G contains an element of
order p.

Proof. Let G be a group with order mp, where p is prime. The proof is by strong induction on m. If m = 1,
then G is cyclic, generated by an element of order p.

Now suppose that the theorem holds for all smaller multiples of p. Then if G contains a proper subgroup
H whose index [G : H] is not divisible by p, then the order of H is divisible by P and, by induction, H
contains an element of order p. In the case that all proper subgroups of G have indices divisible by p, we
split G into a union of disjoint conjugacy classes:

G = {e} ∪ C2 ∪ · · · ∪ Ck

Suppose that each conjugacy class Ci has order ni ≥ 1. Let xi be a representative from each Ci. Then
n = n1 + · · ·+ nk, where, by Theorem 1.4.N, ni = [G : Z({si})]. If ni ̸= 1, then ni is the index of a proper
subgroup of G, and by hypothesis is divisible by p. Surely n1 = 1, so the number of distinct i for which
ni = 1 divides p. But ni = 1 if and only if si ∈ Z(G), so the centre of G has order dividing p. By the
Fundamental Theorem of Finite Abelian Groups, this implies that it contains an element of order p.

Cauchy’s Theorem tells us that if p divides the order of G, at least one subgroup of G has order p. The
first of Sylow’s theorems proves a stronger result.

Theorem S (First Sylow Theorem).
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