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Disclaimer. These notes were taken for the class MATH 596, given at McGill Uni-
versity by Prof. Henri Darmon at McGill University during the Fall 2021 semester.
Over the course of the term, students were asked to present solutions to exercises. I
have indicated when this occurred by attaching students’ names to their respective
solutions. However, in some cases, the solution I recorded here is not word-for-word
the one presented, as I sometimes found a modification that I understood better.
An exercise solution that is unattributed does not necessarily indicate that it is
completely my work, since I spent a lot of time discussing the material with my
classmates. But any error that appears in the notes or exercise solutions, whether
typographical or mathematical, are due to me and me alone.

Let V be a module over a commutative ring R. A function Q : V → R is a
quadratic form if it satisfies

i) Q(ax) = a2Q(x) for all a ∈ R and x ∈ V ; and

ii) the function (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is a bilinear form.

We call (V,Q) a quadratic module; if R is a field, V is a vector space and
we call (V,Q) a quadratic space instead. When R is a field of characteristic not
equal to 2, we can let

x · y =
1

2

(
Q(x+ y)−Q(x)−Q(y)

)
.

This defines a symmetric bilinear form on V , and we have Q(x) = x ·x and there
is a one-to-one correspondence between symmetric bilinear forms and quadratic
forms (which is not true if the characteristic of the field is equal to 2).

Pick a basis (ei)
n
i=1 of V . The matrix A = (aij) where aij = ei · ej is a

symmetric matrix, and for x =
∑n

i xiei ∈ V ,

Q(x) =

n∑
i=1

n∑
j=1

aijxixj .

If we switch to a new basis with the invertible change-of-basis matrix B, then
the matrix of Q with respect to this new basis is the matrix BABT, which
has determinant det(A) det(B)2. We see then that for a quadratic form Q, the
determinant of the matrix A corresponding to Q in any basis is unique up to
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multiplication by an element of (k×)2; we call this the discriminant of Q and
denote it by discQ.

Two elements x and y are orthogonal if x · y = 0. For a subset W ⊆ V , we
define a vector subspace

W⊥ = {x ∈ V : x · y = 0 for all y ∈ W}.

Two vector subspaces W1 and W2 of V are said to be orthogonal if W1 ⊆ W2
⊥

(this is a symmetric relation). We call V ⊥ the radical of V and say that V is
nondegenerate if V ⊥ = {0}. The codimension of V ⊥ is called the rank of V .
If V is the direct sum of vector subspaces W1, . . . ,Wn and the Wi are pairwise
orthogonal, then we say that V is the orthogonal direct sum of the Wi, and write

V = W1 ⊕̂ · · · ⊕̂Wn.

An element x ∈ V is said to be isotropic if x · x = 0, and a subspace is
isotropic if all of its elements are. If no nonzero element in a subspace W is
isotropic, the W is said to be anisotropic. The linear span of two basis vectors e
and f with e · e = f · f = 0 and e · f = 1 is called a hyperbolic plane and is often
denoted H.

Exercise 1. Let V be a nondegenerate quadratic space. Show that any two maximal
isotropic spaces of V have the same dimension, t, called the Witt index of V . Show that
V is isomorphic to an orthogonal direct sum of t hyperbolic spaces and an anisotropic
space W of dimension n− 2t (where n = dimV ).

Proof. (Hazem Hassan and Arihant Jain.) We start with the claim that any two
maximal isotropic spaces have the same dimension. First observe that if U is a maximal
isotropic subspace, then any u ∈ U⊥ with u·u = 0 must also be in U , otherwise we could
extend U and contradict maximality. So let U1 and U2 be maximal isotropic subspaces.
If U1 = U2 we are done; otherwise, consider U1 ×U2 → k that maps (u1, u2) 7→ u1 · u2.
If u1 is such that u1 · u2 = 0 for all u2 ∈ U2, then by the observation above, u1 ∈ U2.
So the left kernel of this map is U1 ∩U2 and a similar argument shows that this is also
the right kernel. This means the map

U1

U1 ∩ U2
× U2

U1 ∩ U2
→ k

is a perfect pairing; that is, U1/(U1 ∩U2) → Homk(U2/(U1 ∩U2), k) is an isomorphism
and vice versa. So dimU1 = dimU2.

Now we show that we can write V =W ⊕̂H1 ⊕̂ · · · ⊕̂Ht where W is anisotropic, t
is the dimension of every maximal isotropic subspace of V , and the Hi are hyperbolic
spaces. LetHi = kei⊕kfi where ei·ei = 0 = fi·fi and ei·fi = 1. Let U = ke1⊕· · ·⊕ket.
Then we see that U is isotropic, since U⊥ = U ⊕̂W and for v = u + w in this space,
v ·v = (u+w) · (u+w) = w ·w is only zero if w = 0. Hence U is maximal and isotropic,
proving that every maximal isotropic subspace has dimension t.

Quadratic spaces over R. Note that R×/(R×)2 = {R≥0,R≤0}. If V is a
nondegenerate quadratic space over R, then it has an orthogonal basis

e1, . . . , er, er+1, . . . , er+s
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with ej · ej = 1 for 1 ≤ j ≤ r and ej · ej = −1 for r + 1 ≤ j ≤ r + s. The
pair (r, s) is called the signature of the quadratic space. The Witt index of V is
t = min{r, s}, and if V = W ⊕̂Ht, where Ht is the orthogonal direct sum of h
copies of a hyperbolic plane, then dimW = |r − s|. When r > s, W is positive
definite and when r < s, W is negative definite.

The orthogonal group O(V ) of a quadratic space V over R is the space

O(V ) = {g ∈ Aut(V ) : gv · gw = v · w for all v, w ∈ V }.

Letting n = dimV and (r, s) be the signature of the space, this can be viewed
as the set of n× n matrices{

A ∈ Mn(R) : ATA = AAT =

(
Ir 0
0 −Is

)}
,

where the Ir and Is that appear in the block matrix are the r×r and s×s identity
matrices, respectively. The condition implies that det(A)2 = 1, meaning that
detA = ±1 for all A ∈ O(V ). The subgroup of A ∈ O(V ) with det(A) = 1
is called SO(V ). It was proven in class by a standard inductive argument that
O(V ) is a real manifold (and thus a Lie group) of dimension n(n− 1)/2, and so
is the subgroup SO(V ).

Hamilton quaternions. The Hamilton quaternions are members of the set
H = R+Ri+Rj +Rk (since the working field here is R, we will temporarily
allow ourselves the use of the letter k for one of the generators of the space)
where we have the relation i2 = j2 = k2 = ijk = −1. If a = x + yi + zj + wk
then a = x−yi−zj−wk and the norm of a is N(a) = aa = x2+y2+z2+w2. We
see from this that every nonzero element a has a multiplicative inverse, namely,
a−1 = a/N(a) with N(a−1) = N(a)−1. Thus H× = H \ {0}. The trace of a is
(a+ a)/2.

Infinitesimals and the tangent space of the identity. Here we give a some-
what informal description of the tangent space of the identity element in a topo-
logical group. Let M be a topological group with identity element 1 that is also
a subgroup of the multiplicative group of an algebra A. The tangent space T1M
at the point 1 is the space of all a ∈ A such that 1+ ϵa is still in M , and here we
encapsulate the fact that ϵ should be very small by letting ϵ be a nonzero formal
parameter whose square is zero. The tangent space is closed under addition,
since if a and b are elements of T1M , then

(1 + ϵa)(1 + ϵb) = 1 + ϵa+ ϵb+ ϵ2ab = 1 + ϵ(a+ b)

and we see that a+b is also in the space. It is also clear that T1M is closed under
multiplication by scalars in the field, so that TpM is a real vector space. The
tangent space of a point (p, q) ∈ M ×N is the product of spaces TpM × TqM .
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Let M and N be two such groups with identities 1M and 1N respectively
and let ϕ : M → N be a group homomorphism. We define the differential dϕ to
be the map from T1MM to T1NN such that the diagram

T1MM
dϕ−→ T1NNyπN

yπN

M
ϕ−→ N

commutes, where πM (a) = 1M + ϵa and πN (b) = 1N + ϵb. The commutativity
of the above diagram tells us that dϕ(a) is given by the formula 1N + ϵdϕ(a) =
ϕ(1M + ϵa) for a ∈ T1MM .

Tangent spaces are relevant because the inverse function theorem tells us
that if ϕ : Rn → Rn is a differentiable map and its derivative (Jacobian) at a
point x is invertible, then there exists an open neighbourhood U of x that is
homeomorphic to its image ϕ(U). If ϕ is also a group homomorphism, then we
have the following lemma.

Lemma T. Let ϕ : G → H be a homomorphism of topological groups and
suppose that there is an open neighbourhood S ⊆ ϕ(G) that contains the identity
of H. If G is connected, then ϕ(G) is the connected component containing the
identity in H.

Proof. Since the function h 7→ h−1 is a continuous involution, S−1 is also open
and so is S∩S−1, which still contains the identity. Thus we may assume without
loss of generality that S is closed under inverses. Let 〈S〉 be the smallest subgroup
of ϕ(G) with S ⊆ 〈S〉. It is easy to see that 〈S〉 =

⋃
h∈⟨S⟩ hS. For all h ∈ ϕ(G),

left multiplication by h is a homeomorphism from ϕ(G) to itself, to 〈S〉 is open.
It remains to show that 〈S〉 is closed, so let h ∈ 〈S〉c be given. If hs ∈ 〈S〉

for some s ∈ S, then h = hss−1 ∈ 〈S〉. So hS is an open neighbourhood of
h contained in 〈S〉c, proving that 〈S〉 is indeed closed. Since 〈S〉 is nonempty,
open, and closed in the connected group ϕ(G), 〈S〉 = ϕ(G) and ϕ(G) is the
connected component of the identity.

Finally, we will take the following lemma on faith.

Lemma C. If G is a Lie group with a connected compact Lie subgroup H such
that G/H is also connected, then G is connected.

Exercise 2. Describe O(V ) and SO(V ) when V is a nondegenerate quadratic space of
dimension 4 over R. How many connected components does the full orthogonal group
have?

Solution. (Marcel Goh and Jad Hamdan.) We will write SO(r, s) to denote SO(V )
when V has signature (r, s), and write SO(n) for SO(n, 0). The question has two largely
unrelated parts. First we describe the components of the identity in the three separate
cases. First we deal with the case (r, s) = (4, 0). Then

Q(x, y, z, w) = x2 + y2 + z2 + w2
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and we can identify (V,Q) with (H, n). Note that the group H× ×H× acts on V by
setting (g, h)∗v = gvh−1. The norm of (g, h)∗v is N(g)N(h−1)N(v), so for an element
(g, h) to preserve the norm, it is necessary and sufficient that N(g) = N(h). We can
also assume that g and h have norm 1, since if λ = N(g) = N(h), then g = λg′ and
h = λh′ for some unit quaternions g′ and h′ and

(g, h) ∗ v = (λg′, λh′) ∗ v = λg′vλ−1h′−1 = g′vh′−1 = (g′, h′) ∗ v.

In particular, if g and h are both real, then (g, h) sends any v ∈ V to itself. Thus,
letting H1 denote the set of quaternions with norm 1, we have the exact sequence

1 −→ {(−1,−1), (1, 1)} −→ H1 ×H1
ϕ−→ O(V ).

Note that the last map ϕ in the sequence is not surjective. In fact, the image of ϕ
is contained in SO(4), since if we represent the action of (g, h) = (a1 + a2i + a3j +
a4k, b1 + b2i+ b3j + b4k) on a quaterion v as the action of a matrix on a vector in R4,
then the matrix of the transformation is AB, where

A =

 a1 −a2 −a3 −a4
a2 a1 −a4 a3
a3 a4 a1 −a2
a4 −a3 a2 a1

 and B =

 b1 −b2 −b3 −b4
b2 b1 b4 −b3
b3 −b4 b1 b2
b4 b3 −b2 b1

 .

We have AAT = I and BBT = I so (AB)(AB)T = I, as prescribed for a member of
O(V ). But we also see that det(A) = N(g) = 1 = N(H) = det(B), so that det(AB) = 1
as well.

To show that SO(4) ⊆ im(ϕ), we need to find the tangent space of the identity in
H1. if 1 + ϵ(x+ yi+ zj + wk) has norm 1, then we must have

(1 + ϵx)2 + ϵ2y2 + ϵ2z2 + ϵ2w2 = (1 + ϵx)2 = 1,

so the trace x of the quaternion must be zero. Thus T1H is 3-dimensional and T1(H1×
H1) is 6-dimensional. On the other hand, the tangent space of the identity matrix I in
SO(4) is the set of all matrices with AT = −A, since the condition that (I+ϵA)(I+ϵA)T

implies that I+ϵ(A+AT) = I. This is a 6-dimensional space as well, since the diagonal
of A must have all entries zero, and the rest of the matrix is determined by the choice
of the six remaining entries in the upper triangle. Thus to show that dϕ is invertible,
it suffices to show it is injective.

Now for (a, b) ∈ T1(H1 ×H1), we note that ϕ(1 + ϵa, 1 + ϵb) is a map on H that
sends v to (1 + ϵa)v(1 + ϵb)−1. Since b has zero trace, (1 + ϵb)−1 = 1− ϵb and

ϕ(1 + ϵa, 1 + ϵb)(v) = (1 + ϵa)v(1 + ϵb)−1 = (v + ϵav)(1− ϵb) = v + ϵ(av − vb).

Then since ϵdϕ(a, b) equals ϕ(1+ ϵa, 1+ ϵb) minus the identity endomorphism, we have
dϕ(a, b)(v) = av − vb. If (a, b) ∈ ker(dϕ), then av − vb = 0 for all v ∈ H, and taking
v = 1 in particular, we have a = b. Thus av = va for all v ∈ H and we see that a ∈ R.
But we assumed that a has trace zero, so (a, b) = (0, 0). We have shown that dϕ is
bijective, so by Lemma T, the image of ϕ is the connected component of the identity
in O(4).
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In the case (r, s) = (3, 1), we have Q(x, y, z, w) = x2 + y2 + z2 − w2 but we can
perform a change of basis with u = z+w and v = z−w to getQ(x, y, u, v) = x2+y2+uv.
Since x2 + y2 = (x+ iy)(x− iy), we can identify (V,Q) with the set of all matrices{(

x+ iy u
v iy − x

)
: x, y, u, v ∈ R

}
,

with the negative determinant as the norm. Letting M∗ = det(M)M−1, we find that
V is precisely the set of M ∈ M2(C) with M∗ = −M . We have (AB)∗ = B∗A∗ for
A,B ∈ M2(C), and this operation is also linear. The group SL2(C) acts on V by
g ∗M = gMg−1. Indeed,

(g ∗M)∗ = (gMg−1)∗ = gM∗g∗ = −gMg∗ = −gMg∗ − g ∗M,

so g ∗ M is in V . Note that the center of SL2(C) is {±I}, and we have the exact
sequence

1 −→ {±I} −→ SL2(C)
ϕ−→ O(V ).

Once again, the image of ϕ is connected. Now we find the tangent space of SL2(C) at
the identity. An element

A =

(
a b
c d

)
∈ M2(C)

in this space satisfies I + ϵA ∈ SL2(C), so det(I + ϵA) = 1 + ϵa+ ϵd = 1. This implies
that d = −a. In other words, the trace of A is zero, and in particular we see that
A∗ = −A. Now we examine what I + ϵA does to a matrix M ∈ V . We note first that

(I + ϵA)−1 =

(
1 + ϵa ϵb
ϵc 1− ϵa

)−1

=

(
1− ϵa −ϵb
−ϵc 1 + ϵa

)
= I + ϵA∗

So

(I+ϵA)M(I + ϵA)
−1

= (M+ϵAM)(I+ϵA∗) =M+ϵAM+ϵMA∗ =M+ϵ(AM−MA),

telling us that dϕ(A) takes matrices M to AM −MA. We now investigate what it
means for A to be in the kernel of dϕ. If MA −MA for all matrices M , then taking
M = I, we see that A = A, meaning that A has all real entries and AM =MA for all
M . This implies that A is a scalar multiple of the identity and since it has zero trace,
A must be 0. We have found that ker(dϕ) = 0, so the connected component of the
identity is isomorphic to SL2(C)/{±I}.

The third case (r, s) = (2, 2) feels a bit like a combination of the two cases above.
We have Q(x, y, z, w) = x2 + y2 − z2 − w2 and with the substitutions x = x + z, y =
x− z, z = w+ y, w = w− y (the variables on the left-hand side are not the same as the
ones on the right-hand side), we have

Q(x, y, z, w) = xy − zw,

so we can identify (V,Q) with (M2(R), det). The group GL2(R)×GL2(R) defines an
action on M2(R) given by (g, h) ∗M = gMh−1. For (g, h) to preserve the determinant
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we must have det g = deth. We can also require that g and h have determinant 1,
because for any λ ∈ R we have det(λg) = det(λh) and

λgM(λh)−1 = λ2gMλ−2h−1 = gMh−1.

Thus we have the exact sequence

1 → {(I, I), (−I,−I)} → SL2(R)× SL2(R)
ϕ→ O(V ).

The computation we performed above for the tangent space of SL2(C) works when the
entries are real as well, so we find that the tangent space of SL2(R) × SL2(R) is the
set of (A,B) such that trA = trB = 0. In particular, since the trace of B is zero, we
can write

B =

(
a b
c −a

)
and the fact that det(I + ϵB) = 1 implies that

(I + ϵB)−1 =

(
1 + a b
c 1− a

)−1

=

(
1− a −b
−c 1 + a

)
= I − ϵB.

So

ϕ(I+ϵA, I+ϵB)(M) = (I+ϵA)M(I+ϵB)−1 = (M+ϵAM)(I−ϵB) =M+ϵ(AM−MB),

and dϕ(A,B)(M) = AM −MB. We argue as before to find that for (A,B) ∈ ker(dϕ),
A = B and A is a scalar of the identity with trace zero and thus (A,B) = (0, 0). So dϕ
is injective and the image of ϕ is isomorphic to

SL2(R)× SL2(R)/{(I, I), (−I,−I)}.

On to the second part of the question. The claim is that O(4) has two connected
components and that O(3, 1) and O(2, 2) both have four. Since SO(V ) is a subgroup
of index 2 in the group O(V ), it suffices to that SO(V ) is connected in the definite
case and that it has two connected components in the other two cases. We do this by
induction, building up from smaller-dimensional instances.

Let V be a 4-dimensional quadratic space with signature (r, s). Note that SO(r, s)
acts transitively on the set X = {x ∈ V : x · x = 1}, which is the orbit of the point
e1 = (1, 0, 0, 0). A matrix in Stab(e1) has e1 as its first row and column, so it must
have the form (

1 0
0 M

)
for someM ∈ SO(r−1, s). So by the orbit-stabiliser theorem, we have a diffeomorphism
SO(r, s)/SO(r − 1, s) ∼= X. We will proceed by induction.

The base cases are SO(1) and SO(1, 1); the former is {1}, which clearly has one
connected component. On the other hand, SO(1, 1) consists of orthogonal 2×2 matrices
M = (a

c
b
d
) with det(M) = 1 and

M−1 =

(
1 0
0 −1

)
MT

(
1 0
0 −1

)
.
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This condition implies that a = d and b = c, so we can write

SO(1, 1) =

{(
a b
b a

)
∈ SL2(R) : a2 − b2 = 1; a, b ∈ R

}
establishing a bijection from SO(1, 1) to the algebraic set x2−y2 = 1, a hyperbola with
two branches on either side of the y-axis. This is in fact a homeomorphism, showing
that SO(1, 1) has two connected components.

In the definite case (r, s) = (4, 0) the induction is straightforward. The set X of
elements of norm 1 in a quadratic space of signature (n, 0) is the unit sphere Sn−1,
which is connected. Having shown that SO(1) is connected and that the quotient
SO(n)/ SO(n − 1) ∼= Sn−1 is connected for all n > 1, we apply Lemma C inductively
to conclude that SO(n) is connected for all n.

For the indefinite cases, the induction is a bit more involved. The set of elements
of unit norm in a quadratic space of signature (1, 2), (1, 3), or (2, 2) is the set of tuples
(x, y, z) or (x, y, z, t) satisfying

x2 − y2 − z2 = 1, x2 − y2 − z2 − t2 = 1, or x2 + y2 − z2 − t2 = 1

respectively, where are all two-sheeted hyperboloids each with two connected compo-
nents. In each case, let X+ be the sheet containing (0, . . . , 1). If we let SO+(r, s)
be the set of matrices of SO(r, s) that preserve X+, one can show that SO+(r, s) is a
subgroup of SO(r, s) with index 2. Using an orbit-stabiliser argument analogous to the
one above, we find that SO+(r, s)/SO+(r − 1, s) ∼= X+.

The set of unit elements in a space of signature (1, 1) is a hyperbola. We have also
shown that SO(1, 1) is homeomorphic to a hyperbola by explicit computation. Using
this identification, we find that the set SO+(1, 1) is homeomorphic to a branch of
SO(1, 1) and is therefore connected. By repeated application of Lemma C and the fact
that SO(r, s) ∼= SO(s, r) for all integers r, s, we conclude that SO+(1, 3) and SO+(2, 2)
are connected. So O(1, 3) and O(2, 2) both have four connected components, and we
already showed that O(4, 0) has two, finishing the exercise.

The Hilbert symbol. For this discussion, let k denote either R or Qp. For
a, b ∈ k×, we define the Hilbert symbol (a, b) by setting

(a, b) =

{
1, if ax2 + by2 = z2 has a nonzero solution (x, y, z) in k3;
−1 otherwise.

Note that (a, b) = (a, c2b) for any element c ∈ k×, since the square can be
absorbed into the variable. For a, b ∈ k×, further properties of the Hilbert
symbol include

i) (a, b) = (b, a) and (a, b2) = 1;

ii) (a,−a) = 1 and (a, 1− a) = 1;

iii) if (a, b) = 1 then (ac, b) = (c, b) for all c ∈ k×; and

iv) (a, b) = (a,−ab) =
(
a, (1− a)b

)
.

Furthermore, it can be shown that the Hilbert symbol is bilinear; that is,
(ac, b) = (a, b)(c, b) for all a, b, c ∈ k×.
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Quadratic forms over Qp. Let (V,Q) be a quadratic space of rank n over
Qp and pick an orthogonal basis (e1, . . . , en). Letting ai = ei · ei, we have
disc(Q) = a1 · · · an. The Hasse-Witt invariant of V is the product

ϵ(V ) =
∏
i<j

(ai, aj);

we saw in class that this does not depend on the choice of orthogonal basis.
We also saw that two quadratic forms over Qp are equivalent (this means their
respective matrices A and A′ are related by A′ = BABT for some invertible
matrix B) if and only if they have the same rank, discriminant, and Hasse-Witt
invariant.

Theorem Z. Let (V,Q) be a quadratic space of rank n over Qp. Writing
d = disc(Q) ∈ Qp/(Q

×
p )

2 and letting ϵ = ϵ(V ) be the Hasse-Witt invariant of
the space, there is a nonzero vector x ∈ V with Q(x) = x · x = 0 if and only if

i) n = 2 and d = −1;

ii) n = 3 and (−1,−d) = ϵ;

iii) n = 4 and either d 6= 1 or else d = 1 and ϵ = (−1,−1); or

iv) n ≥ 5.

Exercise 3. Show that the Hilbert symbol (a, b) for a, b ∈ Q×
p is equal to −1 if and

only if the idoneous central simple algebra over Qp defined by

B = Qp +Qpi+Qpj +Qpk,

where i2 = a, j2 = b, and ij = −ji = k, is a division algebra, and that it is isomorphic
to the matrix algebra M2(Qp) if (a, b) = 1.

Proof. (Sun Kai Leung and Paul-Antoine Seitz.) Call this central simple algebra A
and let q = x+yi+ zj+wk ∈ A. Defining q = x−yi− zj−wk, a routine computation
gives qq = x2−ay2−bz2+abw2 ∈ Qp. This is a quadratic form in the variables x, y, z,
and w of discriminant (ab)2 ∼ 1. The Hasse-Witt invariant of the associated quadratic
space is

(1,−a)(1,−b)(1, ab)(−a,−b)(−a, ab)(−b, ab) = (1, ab)(1, ab)(−a,−ab2)(−b, ab)
= (−a,−a)(−b, ab)
= (−1,−a)(a,−a)(−b, b)(−b, a)
= (−1,−1)(−1, a)(−b, a)
= (−1,−1)(a, b).

If (a, b) = −1, by part (iii) of Theorem Z, we have qq 6= 0 for all nonzero q ∈ A, so
every q 6= 0 has an inverse q−1 = q/(qq). If (a, b) = 1, then there is some (x, y, z, w) 6=
(0, 0, 0, 0) such that x2 − ay2 − bz2 + abw2 = 0. Letting q = x+ yi+ zj +wk, we have
q 6 = 0 and qq = 0, meaning that q is a zero divisor and thus A is not a division algebra.
This settles the first part of the question.
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In the case that (a, b) = 1, there is a nonzero vector (x, y, z) ∈ Qp such that
z2 = ax2 + by2. We must have z 6= 0 and at most one of x and y is zero. Without loss
of generality, suppose that x 6= 0. Defining

A =
1

x

(
z −by
y −z

)
and B =

1

x

(
0 b
1 0

)
,

we have

A2 =
1

x2

(
z2 − by2 −zby + zby
zy − zy −by2 + z2

)
=

(
a 0
0 a

)
= aI

and B2 = bI, while

AB =
1

x

(
z −by
y z

)(
0 b
1 0

)
=

1

x

(
−by bz
−z by

)
= − 1

x

(
0 b
1 0

)(
z −by
y z

)
= −BA,

so that the map sending i 7→ A, j 7→ B, is an isomorphism of Qp-algebras be-
tween A and this matrix algebra. The proof concludes by noting that the span of
{I, A, xB, xAB} is all of M2(Qp), since the matrix 1 0 0 1

0 b 1 0
z −by y −z

−by bz −z by


has determinant 4b(by2 − z2) = −4ax2b 6= 0. In particular, the set {I, A,B,AB} spans
all of M2(Qp) as well.

Lemma Henselianum. Ordo p-adicus vp : Qp → Z ∪ {∞} est functio

vp(x) =

{
n, si x = pnu, ubi u ∈ (Z/pZ)×;
∞, si x = 0.

Subanulus Zp ⊆ Qp est copia elementorum x ∈ Qp cum vp(x) ∈ N ∪ {0,∞}.
Norma p-adica est |x|p = p−vp(x) et definimus spatiam metricum super Qp cum
functio distantiae dp(x, y) = |x − y|p. Sub illam functionem Zp completum est;
i.e., omnis sequentia Cauchiana limitem in spatio habet.

Polynomium f(x1, . . . , xm) cum coefficientibus in Zp et solutionem aequa-
tione f(x1, . . . , xm) ≡ 0 (mod pn) dantur, et volumus levare hanc solutionem
ad solutionem cum coefficientibus in Zp. Lemma sequens de polynomiis unae
incognitae est.

Lemma G. Sit f polynomium unae incognitae cum coefficientibus in Zp et sit
f ′ derivativum eius. Sit x ∈ Zp cum f(x) ≡ 0 (mod pn) et vp

(
f ′(x)

)
= k, ubi n

et k numeri integri sunt, et 0 ≤ 2k < n. Tum existit y ∈ Zp satisfaciens

i) f(y) ≡ 0 (mod pn+1);

ii) vp
(
f ′(y)

)
= k; et

iii) y ≡ x (mod pn−k).



MATH 596 NOTES 11

Demonstratio. Ponimus y = x + pn−kz, ubi z ∈ Zp eligetur postmodum. Hoc
elementum y postulationem (iii) satisfacit. Ex formula Tayloriana sequitur

f(y) = f(x) = pn−kzf ′(x) + p2n−2kz2h(y),

ubi h(y) elementum anuli Zp est. Ex hypothesi f(x) = pnb cum b ∈ Zp et
f ′(x) = pkc ubi c ∈ Zp est elementum vertibile. Tum

f(y) = pn(b+ zc) + p2n−2kz2h(y)

scribere possumus, et eligentes z cum b + zc ≡ 0 (mod p), habemus pos-
tulationem (i), quia 2n − 2k > n. Ex formula Tayloriana cum f ′ habemus
f ′(y) ≡ pkc (mod pn−k) et cum n− k > k, habemus propositionem (ii).

Applicatio repetita huius lemmatis et completudo spatii lemma Henselianum
producunt.

Theorema H. Sit f polynomium m incognitarum cum coefficientibus in Zp.
Sit x = (x1, . . . , xm) ∈ (Zp)

m ut f(x) ≡ 0 (mod pn) et vp
(
fj(x)

)
= k, ubi

1 ≤ j ≤ m, k et n sunt numeri integri satisfacientes 0 ≤ 2k < n, et fj derivativum
partiale functionis f est in incognita ja. Tum existit y ∈ (Zp)

m cum f(y) = 0
et satisfaciens y ≡ x secundum modulum pn−k.

Demonstratio. Primo assumimus m = 1. Ex Lemmate G cum x(0) = x inven-
imus x(1) ∈ Zp ut x(0) et x(1) congrui sunt secundum modulum pn−k et satisfa-
ciens f

(
x(1)

)
≡ 0 (mod pn+1) et vp

(
f ′(x(1))

)
= k. Tum applicamus Lemma G

cum x(1). Sic inductiva mente construimus sequentiam x(0), x(1), . . . ubi indici
generali q

x(q+1) ≡ x(q) (mod pn+q−k) et f
(
x(q)

)
≡ 0 (mod pn+q)

habemus. Haec sequentia Cauchiana est, quia omni integri q, r > 0 habemus
dp
(
x(q+r)−x(q)

)
≤ p−n−q+k. Tum sequentia verge ad limitem y ∈ Zp satisfaciens

f(y) = 0 et y ≡ x (mod pn−k).
Conditio indicis j casum generale ad casum m = 1 reducit. Consideramus

polynomium f̃ unae incognitae cum formula

f̃(x) = f(x1, . . . , xj−1, x, xj+1, . . . , xm).

Deinde casum m = 1 propositionis applicare possumus cum f̃ ; ex illo invenimus
yj ∈ Zp satisfaciens yj ≡ xj (mod pn−k) et f̃(yj) = 0. Ponimus yi = xi omni
indici i 6= j et elementum y = (yi) est solutio desiderata.

Exercise 4. Let p be an odd prime. Show that the quadratic form ax2 + by2 + cz2

with coefficients in Qp, in which a, b, and c belong to Z×
p , has a nontrivial zero, i.e.,

the associated quadratic space over Qp is not anisotropic.
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Proof. (Davide Accadia and Niccolò Bosio.) First, we show that the equation ax2 +
by2+cz2 = 0 has a nonzero solution in Z/pZ. We pick z ∈ Z/pZ so that c′ = −cz2 6= 0,
reducing our problem to finding a solution (x, y) to the equation ax2 = c′ − by2. Since
a, b, and c are all nonzero in Z/pZ, there are (p−1)/2+1 elements in Z/pZ of the form
ax2 and (p− 1)/2+ 1 elements of the form c′ − by2, so these two sets must intersect in
at least one element, giving us a nontrivial solution (x, y, z) to the equation.

It now remains to apply Theorem H to this solution (x, y, z) with m = 3, n = 1,
and k = 0. (The gradient vector of f is (2x, 2y, 2z), one of whose components must
have p-adic valuation equal to 0 since (x, y, z) 6= (0, 0, 0) and p 6= 2.)

Integral lattices. We now turn to quadratic forms defined over the integers Z.
A unimodular lattice is a free abelian group of rank n with a symmetric bilinear
form x · y such that

i) The homomorphism L → Hom(L,Z) that sends x 7→ (y 7→ x · y) is an
isomorphism.

ii) If (ei) is a basis of L over Z, then the determinant of the matrix (ei · ej) is
±1.

The set Hom(L,Z), also denoted L∨, is called the dual of L, and the condi-
tion above explains why unimodular lattices are sometimes called self-dual. An
element x ∈ L can be identified with an element of L∨ if x · y is integer for all
y ∈ L, and this is true for all x in a unimodular lattice. For any ring S admit-
ting a homomorphism Z → S, we obtain an S-module L ⊗ S by extending the
scalars from Z to S. Two lattices L1 and L2 are said to be locally isomorphic if
L1 ⊗ Zp

∼= L2 ⊗ Zp for all primes p and L1 ⊗ Zp
∼= L2 ⊗ Zp. The set of lattices

that are locally isomorphic to a given lattice L is called the genus of L. We saw
in class that two lattices in the same genus must have the same discriminant.
Since V = L ⊗ R is a quadratic space over R, it has a well defined signature
(r, s). As in the real case, we say that L is positive definite if s = 0, negative
definite if r = 0, and indefinite otherwise. Given a quadratic module V , we will
sometimes denote the corresponding quadratic space over a different ring R by
VR.

We say that a lattice L is even or of type II if the quadratic form associated
to L takes only even values, and we say that L is odd or of type I otherwise. We
saw in class that there is an element u ∈ L, unique modulo reduction modulo 2,
such that u · x = x · x (mod 2) for all x ∈ L. The image of u · u in Z/8Z is an
invariant of L, denoted σ(L). If L is even, then σ(L) = 0.

Let 〈1〉 denote the 1-dimensional quadratic space with Q(x) = x2 and let
〈−1〉 denote the quadratic space with Q(x) = −x2 (their bilinear forms are
x · y = xy and x · y = −xy respectively). Note that unless r and s are both
zero, the direct sum 〈1〉r ⊕̂ 〈−1〉s is an odd lattice. In class we saw the following
structure theorem for indefinite unimodular lattices.

Theorem S. Let L be a unimodular indefinite lattice of signature (r, s). If L
is odd, then L ∼= 〈1〉r ⊕̂ 〈−1〉s. If L is even, then r − s ≡ 0 (mod 8) and there is
only one lattice in this case as well, up to isomorphism.

In the solution to the next exercise, we will also use the following lemma.
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Lemma P. Let L and L′ be Zp-lattices of discriminant d with pairing matrices
A and A′ respectively. Let λ = 1 if p is odd and 3 if p = 2. If there exists
T ∈ Mn(Zp) such that TTAT = A′ (mod pλ), then there is X in Mn(Zp) such
that XTAX = A′.

In most of the course, we have assumed that p 6= 2. But for the next exercise,
the definition of a genus of a lattice requires that we consider Z2-lattices. We
will thus require the following lemma, whose proof can be found in Serre (1973).

Lemma E. An element x ∈ Q×
2 is a square if and only if x can be written as

2nu where n is even and u ≡ 1 (mod 8).

Exercise 5. Show that all even unimodular lattices of a given signature (r, s) are in
the same genus. Show that all odd unimodular lattices are in the same genus. Give an
example of two quadratic forms of the same discriminant that lie in different genera.

Proof. (Mart́ı Roset.) Theorem S allows us to consider only the definite case, and
without loss of generality, we can further assume that both lattices are positive definite.
Suppose that L1 and L2 are in the same genus. Then L1 ⊗ Z2

∼= L2 ⊗ Z2 and we find
that L1 ⊗ F2

∼= L2 ⊗ F2. In these lattices over F2, either all vectors have zero length,
in which case L1 and L2 were both even, or some vector has nonzero length, in which
case both L1 and L2 were odd.

Now for the other direction of the proof, suppose that L1 and L2 are unimodular
positive definite integral lattices. Since Li ⊕̂ 〈−1〉 is odd, unimodular, and indefinite, it
is isomorphic to L′ = 〈1〉n ⊕̂ 〈−1〉, which has disc(L′) = −1 and σ(L′) ≡ n−1 (mod 8).
The discriminant is multiplicative and the σ-invariant additive under orthogonal sum,
so disc(Li) = 1 and σ(Li) ≡ n (mod 8). Furthermore, L1 ⊗R ∼= 〈1〉n ∼= L2 ⊗R, so it
remains to show that L1 ⊗ Zp

∼= L2 ⊗ Zp for all primes p.
When p is odd, we see that L1 ⊗Fp and L2 ⊗Fp have the same rank and discrim-

inant, so by Lemma P we find that in fact L1 ⊗ Zp
∼= L2 ⊗ Zp. In the case p = 2, we

introduce some new notation. Let 〈d〉 denote the quadratic form of rank 1 given by
Q(x) = dx2. We will also abuse notation and denote a quadratic form by its pairing
matrix. We then use the fact that any unimodular Z2-lattice is the orthogonal sum of
copies of

〈1〉, 〈3〉, 〈5〉, 〈7〉,
(
0 1
1 0

)
, and

(
2 1
1 2

)
.

We have the relations

i) 〈1〉2 ∼= 〈5〉2 and 〈3〉2 ∼= 〈7〉2;
ii) 〈3〉 ⊕̂ 〈5〉 ⊕̂ 〈7〉 ∼= 〈1〉 ⊕̂ 〈3〉2;
iii) 〈1〉4 ∼= 〈7〉4;
iv) 〈d〉 ⊕̂A ∼= 〈d〉 ⊕̂ 〈1〉 ⊕̂ 〈−1〉 for all d ∈ {1, 3, 5, 7} and A ∈ {( 0

1
1
0
), ( 2

1
1
2
)}; and

v) ( 0
1

1
0
)
2 ∼= ( 2

1
1
2
)
2
.

Now consider Li ⊗Z2. Since Li is even, it is an orthogonal sum of copies of ( 0
1

1
0
)

and ( 2
1

1
2
), since any copies of 〈d〉 would cause the lattice to be odd. The discriminant

of Li ⊗ Z2 is 1 and the discriminants of ( 0
1

1
0
) and ( 2

1
1
2
) are −1 and 3 respectively, so

we find that

Li ⊗ Z2
∼=
(
0 1
1 0

)r1

⊕̂
(
2 1
1 2

)r2
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with both r1 and r2 even, so by property (v) above we have Li ⊗ Z2
∼= ( 0

1
1
0
)
r1+r2 . If

the Li are odd, we have

Li ⊗ Z2
∼= 〈1〉r1 ⊕̂ 〈3〉r3 ⊕̂ 〈5〉r5 ⊕̂ 〈7〉r7 .

Since the discriminant is 1, either r3, r5, and r7 are all even or they are all odd. If they
are all odd, we the relation (ii) to make them all even (increasing r1 in the process).
Then we can use the relations in (i) to see that

Li ⊗ Z2
∼= 〈1〉r1 ⊕̂ 〈7〉r7 ,

for some r1 and r7 possibly different from above. Since Li is positive definite of rank
r1 + r7, σ(Li) must be congruent to r1 + r7 modulo 8, but on the other hand, from the
right-hand side we must have r1 + r7 ≡ r1 + 7r7 (mod 8). This means that r7 is either
0 or 4 modulo 8, and we can use relation (iii) to find that L1 ⊗ Z2

∼= 〈1〉n ∼= L2 ⊗ Z2.
To get lattices with the same discriminant lying in different genera, take an even

lattice of discriminant 1, say the space E8 we constructed in class, and an odd lattice
of discriminant 1 of the same rank (we can take 〈1〉8 as the example corresponding to
E8).

Modular forms and theta series. Let H denote the complex upper half-
plane; that is, the set of z ∈ C with =z > 0. Given an lattice L of rank n, we
define the theta series of L to be the sum

θL(z) =
∑
v∈L

eπi(v·v)z,

where z ∈ H. It is easy to see that θL(z+2) = θL(z), and when L is unimodular,
one can also show that

θL

(−1

z

)
=

(z
i

)n/2

θL(z).

If L is even, then v·v is always even, so we actually have θL(z+1) = θL(z), and we
saw in class that the dimension n of an even unimodular lattice is always a mul-
tiple of 8, so the factor of 1/

√
i disappears and we have θL(−1/z) = zn/2θL(z).

The significance of this becomes apparent when we note that the group SL2(Z)
of integral matrices with determinant 1 acts by Möbius transformations on the
upper half-plane; for an element g =

(
a
c
b
d

)
∈ SL2(Z) and z ∈ H, we have

g ∗ z =
az + b

cz + d
.

Since the matrices (
1 1
0 1

)
and

(
0 −1
1 0

)
generate SL2(Z), the formulas above show that the theta series of an even uni-
modular lattice is invariant under the action of SL2(Z), up to a factor of zn/2.
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A modular form of weight k on a subgroup Γ ⊆ SL2(Z) (which may be
SL2(Z) itself) is a holomorphic function f : H → C satisfying

f
(az + b

cz + d

)
= (cz + d)kf(z)

and with an expansion

f(z) =

∞∑
n=0

ane
2πinz,

for some an ∈ C. The space of all such functions is denoted Mk(Γ).

Exercise 6. This exercise deals with odd unimodular lattices, which were largely left
out of our discussion in class. In the following, q = e2πiz and y = =z.

a) Let L be an odd unimodular lattice of rank 2k. Show that the theta series θL(z) is
invariant under the group Γ(2) consisting of matrices in SL2(Z) that are congruent
to the identity modulo 2.

b) To avoid having theta series with fractional powers of q, it is useful to redefine
θL(q) by the rules

θL(z) =
∑
v∈L

e2πi(v·v)z and θL(q) =
∑
v∈L

qv·v =

∞∑
n=0

rL(n)q
n,

where rL(n) denotes the number of vectors v ∈ L with v · v = n. Show that θL(q)
is a modular form of weight k on the subgroup Γ0(4) consisting of matrices in
SL2(Z) that are upper triangular modulo 4.

c) Although the Eisenstein series E2 defined by

E2(q) = 1− 24

∞∑
n=1

σ1(n)q
n,

where σ1(n) =
∑

d\n d, fails to be invariant under the action of SL2(Z), the

modification

E∗
2 (z) = E2(z)−

3

πy

is a modular form of weight 2, though no longer holomorphic. Use this fact to
show that the series

E
(2)
2 = E2(z)− 2E2(2z) = E2(q)− 2E2(q

2)

and
E

(4)
2 = E2(z)− 4E2(2z) = E2(q)− 2E2(q

4)

are (holomorphic) modular forms of weight 2 on Γ0(4).

d) Show that any modular form of weight k on Γ0(4) has exactly k/2 zeroes on any
fundamental region. Use this to conclude that M2(Γ0(4)) is 2-dimensional, and

thus spanned by the two Eisenstein series E
(2)
2 and E

(4)
2 .



16 MARCEL K. GOH

e) Use the result of (d) to calculate the number of vectors of odd length in any odd
unimodular quaternary quadratic form.

f) Write the theta series attached to the standard quaternary lattice Z4 with the
standard dot product, and the theta series attached to the lattice

D4 =
{
(a, b, c, d) ∈ Z4 ∪

(
Z+

1

2

)4

: a+ b+ c+ d ∈ 2Z
}
.

Deduce a closed form expression for the number of vectors of a given length in
each of these two lattices.

Proof. For part (a), we first show that Γ(2) is generated by the three matrices(
1 2
0 1

)
,

(
1 0
2 1

)
, and

(
−1 0
0 −1

)
To see this, note that for a general matrix (a

c
b
d
) ∈ Γ(2),(

a b
c d

)(
1 −2
0 1

)
=

(
a b− 2a
c d− 2c

)
and (

a b
c d

)(
1 0
−2 1

)
=

(
a− 2b b
c− 2d d

)
.

Suppose that b 6= 0. Since |a| is odd and |b| is even, they are not equal. if |a| is larger,
we use the division algorithm to find q, r such that |a| = |2b|q + r, where |r| < |b|, and
then apply the second transformation q times to strictly reduce the absolute value of
the top-left matrix entry. If |b| is larger, we reduce the absolute value of the top-right
entry in a similar fashion. We can keep doing this until b = 0, in which case the matrix
must be some integer power of ( 1

2
0
1
), after possibly multiplying by (−1

0
0
−1

).
Thus it suffices to prove invariance under the three generators of Γ(2). The neg-

ative identity matrix acts as the identity Möbius transformation, and we already saw
that theta series are invariant under the transformation z 7→ z + 2. The last generator
is ( 1

2
0
1
), which also poses no problem, since

θL

(
z

2z + 1

)
=
(
i

z

)k

θL

(−2z − 1

z

)
=
(
i

z

)k

θL

(−1

z

)
=
(
i

z

)k(z
i

)k

θL(z) = θL(z).

We start part (b) by claiming that Γ(2) and Γ0(4) are conjugate in SL2(Q), by
the element ( 2

0
0
1
). Indeed, for any γ = (a

c
b
d
) ∈ SL2(Z)(

1/2 0
0 1

)(
a b
c d

)(
2 0
0 1

)
=

(
a/2 b/2
0 1

)(
2 0
0 1

)
=

(
a b/2
2c d

)
,

and if γ ∈ Γ(2) to begin with, then 2c is a multiple of 4 so the result is in Γ0(4). On
the other hand,(

2 0
0 1

)(
a b
c d

)(
1/2 0
0 1

)
=

(
2 b
0 1

)(
1/2 0
0 1

)
=

(
a b
c/2 d

)
.
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In this case, if γ ∈ Γ0(4), then bc is even so a and d must be odd for ad− bc to equal
1. Since c was a multiple of 4, we have c/2 even and of course, so is 2b, so the result is
in Γ(2). This gives a set of generators for Γ0(4); since(

1/2 0
0 1

)(
1 2
0 1

)(
2 0
0 1

)
=

(
1 1
0 1

)
and (

1/2 0
0 1

)(
1 0
2 1

)(
2 0
0 1

)
=

(
1 0
4 1

)
,

the matrices (
1 1
0 1

)
,

(
1 0
4 1

)
, and

(
−1 0
0 −1

)
comprise a set of generators for Γ0(4).

We shall call the modified theta series in part (b) θ′L(z), to know when we have
an extra factor of two and when we do not. Invariance under z 7→ z + 1 is easy, since

θ′L(z + 1) = θL(2z + 2) = θL(2z) = θ′L(z).

For the other nontrivial transformation, we first note that

θ′L

(−1

4z

)
= θL

(−1

2z

)
=
(
2z

i

)k

θL(2z) =
(
2z

i

)k

θ′L(z).

We now have all we need to show that θ′L(z) is a modular form of weight k on Γ0(4),
because for the Möbius transformation z 7→ z/(4z + 1) we have

θ′L

(
z

4z + 1

)
= θ′L

(
−1

4(−1/(4z)− 1)

)
=

(
2i
(

1

4z
+ 1

))k

θ′L

(−1

4z
− 1

)
=

(
2i
(

1

4z
+ 1

))k

θ′L

(−1

4z

)
=

(
2i
(
2z

i

)(
1

4z
+ 1

))k

θ′L(z)

= (4z + 1)kθ′L(z).

For part (c), we begin by noting that since

E2(z)−NE2(Nz) = E2(z)−
3

πy
−NE2(Nz)−N

3

Nπy
= E∗

2 (z)−NE∗
2 (Nz),

for any N ≥ 2, in particular both E
(2)
2 and E

(4)
2 are holomorphic and we are done if

we can show that E∗
2 (2z) and E

∗
2 (4z) are modular forms of weight 2 on Γ0(4). In fact,

for all N ≥ 2 we shall show that if g(z) is a modular form of weight 2 on SL2(Z), then
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f(z) = g(Nz) is a modular form of weight k on Γ0(N). (This would settle the question
since Γ0(4) ⊆ Γ0(2) and any modular form on Γ0(2) is automatically a modular form
on Γ0(4).) Well, letting (a

c
b
d
) ∈ Γ0(N), we have

f
(
az + b

cz + d

)
= g

(
N
az + b

cz + d

)
= g

(
Naz +Nb

cz + d

)
= g

(
a(Nz) +Nb

(c/N)(Nz) + d

)
.

But since c is a multiple of N , the matrix ( a
c/N

Nb
d
) has integral entries and has de-

terminant ad − (Nb)(c/N) = ad − bc = 1. So g is weight-2 invariant under its action,
and

f
(
az + b

cz + d

)
= g

(
a(Nz) +Nb

(c/N)(Nz) + d

)
= ((c/N)(Nz) + d)

2
g(Nz) = (cz + d)2f(z).

To begin part (d), we first show that Γ0(4) is a subgroup of index 6. We already
found that Γ(2) and Γ0(4) are conjugate subgroups of SL2(Q), which means they
have the same index in SL2(Z). Furthermore, we a homomorphism from SL2(Z) to
SL2(Z/2Z) given by reduction of entries modulo 2, giving the short exact sequence

1 −→ Γ(2) −→ SL2(Z) −→ SL2(Z/2Z) −→ 1.

An element (a
c

b
d
) of SL2(Z/2Z) must have ad− bc = 1 in Z/2Z, so either ad = 1 and

bc = 0 or vice versa. In each case there are three ways to make a product equal to 0, so
the cardinality of SL2(Z/2Z) is 6. We saw in class that any fundamental domain of the
action of SL2(Z) on the upper half-plane has k/12 zeroes of a modular form (counting
fractional zeroes on the boundary). So let F be a modular form of weight 12 on SL2(Z)
with its single zero at, say, 2i (chosen because it is right in the middle of the usual
fundamental domain for SL2(Z)\H). Since Γ0(4) is an index-6 subgroup of SL2(Z),
we know that F has 6 zeroes on Γ0(4)\H and F k has 6k zeroes on the same region.
Now let g ∈ M2(Γ0(4)) be given, with m zeroes on Γ0(4)\H. We want to show that
m = k/2. Well, whatever m is, we know that g12 has 12m zeroes. Now we consider the
function g12/F k, which is meromorphic on the compact Riemann surface Γ0(4)\H and
thus has as many zeroes as poles. The number of zeroes it has is 12m and the number
of poles it has is 6k. So m = k/2, which is what we wanted to show.

In particular, any modular form of weight 2 on Γ0(4) has exactly one zero. Eval-
uating E2(q) at q = 0 (equivalent to evaluating E2(z) at z = i∞) gives a value of 1, so

E
(2)
2 (0) = −1 and E

(4)
2 (0) = −3. From here we see that F (z) = 3E

(2)
2 (z)−E

(4)
2 (z) has

a zero at i∞, meaning that it has no zeroes on the upper half-plane H. So, given any
modular form f on Γ0(4) of weight 2, we can subtract a multiple of E

(2)
2 to get a form

that has a zero at i∞, and then divide by F to get a modular form of weight 0, which
must be a constant. Symbolically, this amounts to showing that any f satisfies

f − λE
(2)
2

F
= µ

for some λ, µ ∈ C; that is, f = λE
(2)
2 + µF . Since E

(2)
2 and E

(4)
2 are linearly indepen-

dent, we have shown that M2(Γ0(4)) is 2-dimensional, bringing us to the end of part
(d).
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For part (e), we have the general formula

σ1(n/N)−Nσ1(n/N) =
∑
d\n

d−
∑

d\(n/N)

Nd =
∑
d\n

d−
∑

N\d\n

d =
∑

N/\d\n

d.

We saw that for any lattice L of rank 2k, θ′L(q) is a modular form of weight k on

Γ0(4), so by the result of the previous section, we can write θ′L = λE
(2)
2 + µE

(4)
2 and

by equating coefficients, we find that the number of vectors of length n ≥ 1 in L is

rL(n) = λ
∑
2/\d\n

d+ µ
∑
4/\d\n

d.

We can determine λ and µ from rL(0) and rL(1). Since the constant terms of E
(2)
2

and E
(4)
2 are −1 and −3 respectively, we have rL(0) = −λ − 3µ. So we have the

simultaneous equations (
rL(0)
rL(1)

)
=

(
−1 −3
−24 −24

)(
λ
µ

)
,

which we can solve to get

λ =
rL(0)

2
− rL(1)

16
and µ =

rL(1)

48
− rL(0)

2
.

Finally, we have come to part (f). We start by noting that both of these lattices
have exactly one vector of length 0. There are 8 ways to make a vector of length 1 in
Z4, since there are four slots to put either a 1 or −1. There are also 8 ways to make
a vector of length 1 in D4, since the 16 vectors of the form (±1/2,±1/2,±1/2,±1/2)
have norm 1, but only half of them have an even number of −1/2s, which is necesssary
for the sum of the coordinates to be even. Invoking part (e) now, we find that λ = 0

and µ = −1/3. Hence both lattices have theta series −E(4)
2 /3.

Exercise 7. Let G be a group acting transitvely on a set X. Let x0 ∈ X and let S be
a subset of G such that for all x ∈ X, there exists g ∈ S with gx0 = x. Show that G is
generated by S together with the stabiliser of x0.

Proof. Let g ∈ G. There exists x ∈ X (namely, g−1x) such that gx = x0. Now by the
property of S, there is s ∈ S with sx0 = x. So we see that gsx0 = x0, meaning that
gs ∈ Stab(x0). But this means that g = gs · s−1, and since G is closed under inverses,

G = G−1 = (Stab(x0)S−1)
−1

= S Stab(x0).

The projective line. For the next exercise, we define the projective line P1(k)
over a field k to be the set k2 \

{
(0, 0)

}
quotiented by the equivalence relation

∼ that deems (x, y) ∼ (λx, λy) for any nonzero scalar λ ∈ k. We denote the
equivalence class of (x, y) by [x : y]. If y 6= 0, we see that [x : y] = [z : 1] for
some z ∈ k. The element [1 : 0] is the only element that cannot be written in
this way; it is called the point at infinity.
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Exercise 8. Let k be a field. Show that SL2(k) is generated by matrices of the form(
1 t
0 1

)
and

(
a 0
0 a−1

)
for t ∈ K and a ∈ K×, along with w = ( 0

−1
1
0
). More precisely, show that SL2(k) =

B tBwB, where B is the subgroup of upper triangular matrices. This is known as the
Bruhat decomposition of SL2(k).

Proof. The group SL2(k) acts on the set P1(k) by matrix multiplication; that is,(
a b
c d

)
[x : y] = [ax+ by : cz + dy].

To see that this action is transitive, note that GL2(k) is transitive on the set of nonzero
vectors in k2, and scaling the matrix to insist that it has determinant 1, we do not
change its output in the projective line. Note that

Bw[1 : 0] =

{(
a b
0 d

)(
0 1
−1 0

)
: a, b, d ∈ k

}
= {[−b : −d] : b, d ∈ k}.

Since ad = 1, d cannot be zero, and we can divide out by −d to find that this is the set
{[z : 1] : z ∈ k}. In particular, the identity matrix I is not a member of Bw, but for
any p ∈ P1(k), there exists γ ∈ S = Bw t {I} such that γ[1 : 0] = p. Note also that
any upper triangular matrix fixes the point [1 : 0], and if any γ ∈ SL2(Z) fixes [1 : 0],
then its bottom-left entry must be zero, so Stab([1 : 0]) = B. Applying the result of
Exercise 7 with x0 = [1 : 0] gives us

SL2(k) = S · Stab([1 : 0]) = (Bw t {I})B = BwB tB,

which is what we wanted.

Exercise 9. Show that every element of SL2(R) can be written uniquely in the form(
1 x
0 1

)(
y1/2 0
0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)
for x ∈ R, y ∈ R>0, and θ ∈ [0, 2π). This is known as the Iwasawa decomposition of
SL2(R).

Proof. The set SL2(R) acts on the upper half-plane H by Möbius transformations. We
let

S =

{(
1 x
0 1

)(
y1/2 0
0 y−1/2

)
: x ∈ R, y > 0

}
,

and note that (
y1/2 xy1/2

0 y−1/2

)
∗ i = y1/2i+ xy1/2

y−1/2
= x+ iy,
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so since x ∈ R and y > 0 we see that for any z ∈ H, there is some element of S such
that S ∗ i = z. Now the stabiliser of i is the set of all (a

c
b
d
) ∈ SL2(R) with

ai+ b

ci+ d
= i.

This equation implies that a = d and b = −c, which, along with the condition ad−bc =
1, gives a2 + b2 = 1 and we see that the set of all such matrices can be parametrised by
letting a = cos θ and b = sin θ. We are now in the fortunate position to apply Exercise
7 once again.

We have shown that for any γ = (a
c

b
d
) ∈ SL2(Z), there are x, y, and θ such that(

1 x
0 1

)(
y1/2 0
0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)(
a b
c d

)
=

(
1 0
0 1

)
.

(For convenience, we construct γ−1 instead of γ.) Given only the triple (x, y, θ), we
can work backwards to find the matrix (a

c
b
d
) above. Since the bottom-left entry on

the right-hand side is zero, we have c cos θ = a sin θ, whence c = a tan θ. In the next
multiplication, we find that ya2 + yc2 = 1, so

a =
1√

y(1 + tan θ)
and c =

tan θ√
y(1 + tan θ)

.

Lastly, from the equations ab+ cd = −x(a2 + c2) and ad− bc = 1, we find that

b =
c− ax(a2 + c2)

a2 + c
and d =

1 + bc

a
,

finishing the proof of uniqueness.

The Fourier transform. Let f be a Schwartz function on a finite-dimensional
vector space V over R. (We will not concern ourselves with exactly what a
Schwartz function is; one should think of it as having nice decay properties at
infinity.) The Fourier transform f̂ of f is the integral

f̂(y) =

∫
V

f(x)e−2πi(x·y) dx.

The Fourier transform over other quadratic spaces is given similarly, though
in these settings we have to change what we mean by “nice” function. On
Qp, we can take compactly supported functions. Of course, when we integrate
over Qp, we’ll need to know what measure we are integrating against. Luckily,
there is a translation-invariant, countably additive measure µ on Qp called the
Haar measure, which we shall use without worrying about the details of its
construction. Now that we have a measure (Lebesgue or Haar) on V , we can
define the covolume of L as the measure of a fundamental region of V/L.

Additive characters. An additive character is a homomorphism from an abel-
ian group Z to the unit circle; that is, for x, y ∈ Z we have χ(x+ y) = χ(x)χ(y).
A character is said to be trivial if it assigns the value 1 to every member of
the group. The following lemma is a simple consequence of definitions, but is
extremely useful.
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Lemma Z. Let χ be a nontrivial character on an additive group Z. Then

∑
x∈G

χ(x) = 0.

Proof. Since χ is nontrivial, there must be some x0 ∈ Z with χ(x) 6= 1. Then
writing ∑

x∈G

χ(x) =
∑
x∈G

χ(x0 + x) = χ(x0)
∑
x∈G

χ(x),

we see that this sum must be zero.

Before proceeding, we stop to prove a miscellaneous lemma about contain-
ment of Zp-lattices. It will be useful in a couple of the exercises below.

Lemma B. Let L and L′ be Zp-lattices of the same rank. There exists a positive
integer m such that pmL ⊆ L′.

Proof. Being free abelian groups, L and L′ both have Zp-bases; call the matrices
with these bases as columns B and B′ respectively. These bases are also Qp-
bases for the associated quadratic space VQp . The matrix X such that B = XB′

has finitely many entries, all of which are p-adic rationals. Thus there is an m
for which pmX has entries in Zp. Now given a vector v = pmw ∈ pmL, we can
express it as a linear combination of vectors in B′ by multiplying it by X on the
left. Since pmX and w both have entries consisting entirely of p-adic integers,
Xv = Xpmw = (pmX)w also consists entirely of p-adic integers. Hence we can
express v as a Zp-linear combination of vectors in L′.

Exercise 10. Show that the characteristic function on Zp is equal to its Fourier trans-
form. More generally, let V be a quadratic space over Qp and let L be a Zp-sublattice
of V . Show that the Fourier transform of L is µ(L) times the characteristic function of
the Zp-dual lattice; that is,

1̂L = µ(L)1L∨ .

Proof. Expanding the definition of the Fourier transform gives

1̂L(x) =

∫
V

1L(y)e
−2πi(x·y) dy =

∫
L

e−2πi(x·y) dy.

If x is an element of the dual, then x · y is an integer for all y ∈ L, so the integrand is
1 and the integral equals µ(L). If not, then χ(y) = e−2πi(x·y) is a nontrivial character.
The kernel of χ is a sublattice of L, so by Lemma B, there is n such that kerχ ⊇ pnL,
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so by translation-invariance of the measure µ,∫
L

e−2πi(x·y) dy =
∑

v∈L/pnL

∫
v+pnL

χ(y) dy

=
∑

v∈L/pnL

χ(v)

∫
pnL

χ(y) dy

=
∑

v∈L/pnL

χ(v)

∫
pnL

1 dy

= µ(pnL)
∑

v∈L/pnL

χ(v).

But this is zero because the sum of a nontrivial character over a group is zero, by
Lemma Z.

Adèles. We let
Ẑ =

∏
p

Zp,

where the product is taken over all primes p. We then define AZ = R× Ẑ. The
ring of adèles AQ is the tensor product AQ = Q ⊗Z AZ. An element in this
ring is an infinite tuple consisting of a real number and one p-adic rational for
each p, all but finitely many of which are p-adic integers.

Exercise 11. Let L be a lattice of covolume 1 in a quadratic space V . The Poisson
summation formula on VR asserts that∑

v∈L

ϕ(v) =
∑
v∈L∨

ϕ̂(v),

for all Schwartz functions ϕ on VR, where L∨ is the dual lattice of V . The adèlic
Poisson summation formula asserts that∑

v∈V

ϕ(v) =
∑
v∈V

ϕ̂(v),

for all adèlic Schwartz functions ϕ on VAQ . Show that the adèlic Poisson summation
formula implies its more familiar analogue on VR.

Proof. Given a Schwartz function ϕ on R, we take our Schwartz function on the adèle
ring to be f = ϕ⊗ 1

L⊗Ẑ
. We have∑

v∈L

ϕ(v) =
∑
v∈V

1
L⊗Ẑ

(v)ϕ(v) =
∑
v∈V

f(v).

By the adèlic Poisson summation formula, the right-hand side becomes∑
v∈V

f(v) =
∑
v∈V

f̂(v),



24 MARCEL K. GOH

but by the previous exercise, the Fourier transforms at the p-adic components are
characteristic functions of dual lattices. So∑

v∈V

f̂(v) =
∑
v∈V

1
L∨⊗Ẑ

ϕ̂(v) =
∑
v∈L∨

ϕ̂(v),

which is what we were aiming to show.

Exercise 12. Let G = GLn(Qp) and let X = GLn(Qp)/GLn(Zp). Show that the
action of G on X satisfies the finiteness assumption that was made in class when we
discussed Hecke operators, i.e., that the stabiliser of any x ∈ X acts on X with finite
orbits.

Proof. We want to show that for all x ∈ X, the set StabG(x)y is finite. Note that
StabG(e) = GLn(Zp), and for general x ∈ X, we have

StabG(x) = xGLn(Z)x
−1.

So for y ∈ X, Stab(x)y = xGLn(Zp)x
−1y and we are done if we can show that

GLn(Zp)z is finite for any z ∈ X. By applying Lemma B with L = zZn
p and L′ = Zn

p ,
we obtain m such that zpmZn

p ⊆ Zn
p . Then we apply Lemma B again with L = Zn

p and
L′ = zpmZn

p to get k ≥ m such that pkZn
p ⊆ pmzZn

p .
Now letting L = pmZn

p , we can associate to any x ∈ X the sublattice xL of Qn
p .

If x and x′ are different, then these sublattices are different, so our problem reduces to
showing that the set of lattices of the form γzL, where γ ∈ StabG(x), is finite. Since γ
comes from a conjugate of GLn(Zp), it fixes Z

n
p , so have the chain of inclusions

pkZn
p ⊆ γ(zL) ⊆ Zn

p ,

showing that any such lattice of the prescribed form is a subgroup of Zn
p containing

pkZn
p . By the correspondence theorem, these subgroups are in bijection with elements

of
Zn

p/(p
kZn

p ) ∼= (Z/pkZ)
n
,

which is finite.

Exercise 13. Let L be a unimodular Zp-lattice in a quadratic space V over Qp, and
let G be the orthogonal group over Zp attached to L. Show that G(Qp) acts transitively
on the set of pairs (L1, L2) of unimodular lattices satisfying L1/(L1 ∩ L2) ∼= Z/pZ.

Proof. (Reginald Lybbert.) We write L ∼p L
′ if L/(L∩L′) ∼= Z/pZ and we take it as

a fact (it was shown in class) that this is a symmetric relation. We shall also assume
that p 6= 2, for the sake of everyone’s sanity. Since G(Qp) acts transitively on lattices,
we can assume that the first lattice in each tuple is the same. It is then enough to show
that for any (L,L1) and (L,L2), we can find a map stabilising L that sends L1 to L2.
(We will allow ourselves the use of L for a general unimodular lattice, not necessarily
the one in the definition of G.) Note first that pL1 ⊆ L, since it is contained in the
kernel of L1 → Z/pZ, which is L1 ∩L. The kernel of L→ L/pL is of course pL, so the
kernel of ϕ : pL1 → L/pL is pL1 ∩ pL. So we have

ϕ(pL1) ∼=
pL1

pL1 ∩ pL
∼=

L1

L1 ∩ L
∼=

Z

pZ
.
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This is some line in L/pL, and it is isotropic because the length of any element in L1

is integer. Multiplying by p, the length of the element in L/pL is a multiple of p and
thus 0. In fact, there is a correspondence between p-neighbours of L and isotropic lines
in L/pL. Given an isotropic line in L/pL, we see that it’s preimage must lie in L ∩ L′

for some lattices L and L′. But we know what L is, so we can deduce the lattice L′ for
which the isotropic line is ϕ(pL′). This shows the relation is one-to-one.

To show that the relation is surjective, we take an isotropic line in L/pL, spanned
by an element v ∈ L; by Hensel’s lemma (since p 6= 2, the gradient vector of the
quadratic form is nonzero), we can lift this to a vector v ∈ L with v · v = 0. Consider

Lv = Zp · 1
p
v + {w ∈ L : w · v ≡ 0 (mod p)}.

The claim is that Lv is a p-neighbour of L. To show that it has rank n, note that
Lv ⊆ (1/p)L and pL ⊆ Lv, giving us Qn

p ⊆ Lv ⊗ Qp ⊆ Qn
p . Next, consider the map

Lv → Z/pZ sending (a/p)v + w to a mod p. It is certainly injective and its kernel is
L ∩ Lv. It remains to show that Lv is unimodular, which takes a bit of work. Since v
is an isotropic vector in a unimodular lattice L, we can find a vector u with u · v = 0
such that Qpu ⊕̂ Qpv is a hyperbolic plane. Let 〈u, v〉 denote the span of u and v in
the lattice L, and let 〈u, v〉⊥L denote its complement with respect to L. We have

L = 〈u, v〉 ⊕̂ 〈u, v〉⊥L ,

where since both L and 〈u, v〉 are unimodular, we conclude that 〈u, v〉⊥L is. Note that

Lv =
〈
pu,

v

p

〉
⊕̂
〈
pu,

v

p

〉⊥

Lv

.

Since (v/p) · (v/p) = 0 = (pu) · (pu) and (v/p) · (pu) = 1, the first summand is
unimodular. It thus remains to prove that the second summand is. We shall in fact
show that 〈u, v〉⊥L = 〈v/p, pu〉⊥Lv

. Take w ∈ L such that w · v = w ·u = 0. Then w ∈ Lv

and w ·(v/p) = w ·pu = 0. On the other hand, if w ∈ Lv with w ·(v/p) = w ·pu = 0, then
writing w = (a/p)v+x for some x ∈ L, we can write x = λv+µu+y where y ∈ 〈u, v〉⊥L ,
by the decomposition of L we found earlier. We know that w · v = p(w · v/p) = 0 and
w · u = (1/p)w · (pu) = 0, so w is actually equal to y above, and thus is in L.

We have now shown that we can write

L = 〈u1, v1〉 ⊕̂ 〈u1, v1〉⊥L = 〈u2, v2〉 ⊕̂ 〈u2, v2〉⊥L

where

L1 =
〈
pu1,

v1
p

〉
⊕̂
〈
pu1,

v1
p

〉⊥

Lv

and

L2 =
〈
pu2,

v2
p

〉
⊕̂
〈
pu2,

v2
p

〉⊥

Lv

.

The claim is that the map g ∈ G(Qp) sending u1 7→ u2 and v1 7→ v2 fixes L and sends
L1 to L2. It is clear that 〈u1, v1〉 ∼= 〈u2, v2〉 = g〈u1, v1〉. Then by Witt’s cancellation
theorem over Zp, we have 〈u1, v1〉⊥L ∼= 〈u2, v2〉⊥L = g〈u1, v1〉⊥L as well, which completes
the proof that gL1 = L2. (We proved Witt’s cancellation theorem in class for fields
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but not lattices in general. However, it holds for lattices over Zp where p is odd, which
can be seen by reducing the lattice modulo p and using the cancellation theorem for
Fp; this was proved by B. W. Jones in 1942.)

Symplectic space and the Heisenberg group. A symplectic space is a vector
space V over a field k endowed with a bilinear form 〈·, ·〉 : V × V → k, which is
alternating in that 〈v, w〉 = −〈w, v〉 for all v, w ∈ V and which is nondegenerate,
i.e., 〈u, v〉 = 0 for all v ∈ V if and only if u = 0. A key example is taking W = k2,
with 〈

(a1, b1), (a2, b2)
〉
= a1b2 − a2b1.

The Heisenberg group of a symplectic space W is the set k × W endowed
with the group law

(t1, w1)(t2, w2) =
(
t1 + t2 + 〈w1, w2〉, w1 + w2

)
.

Of course, in the case that W is k2, this boils down to the group law

(t1, v1, w1)(t2, v2, w2) = (t1 + t2 + v1w2 − v2w1, v1 + v2, w1 + w2)

on triples in k3.

Exercise 14. Write down the character table of the Heisenberg group H(W ) where
W is the two-dimensional symplectic space over the field with p elements.

Solution. There are p elements in the centre of H(W ), namely the elements (t, 0, 0)
for t ∈ k, so there are p conjugacy classes {(t, 0, 0)} of one element each. The other
conjugacy classes are of the form

{(t, v1, v2) : t ∈ k}

for (v1, v2) 6= (0, 0); there are p2 − 1 of these classes, and each of them contains p
elements, so we have accounted for all p+ p(p2 − 1) = p2 elements of H(W ). So there
are p2+p−1 characters as well. We shall show that the character table is the following:

Quantity Dimension Indexed by {(t, 0, 0)} : t ∈ k {(∗, v, w)} : (v, w) ̸= (0, 0)

p2 1 (m,n) ∈ k2 1 ζp
mv+nw

p− 1 p n ∈ k \ {0} pζp
nt 0

Let ζp be a primitive pth root of unity. There are p2 representations of degree
1, indexed by (m,n) ∈ k2, each mapping (t, v, w) 7→ ζp

mv+nw. For the other p − 1
representations, note that there are p − 1 nontrivial characters ψn : k → C, given by
ψn(t) = ζp

nt, where n ∈ k \ {0}. Each of these gives an action of H(W ) on S(V ), since
for f ∈ S(V ), we can let

((t, 0, 0) ∗ f)(x) = ψn(t)f(x) and ((0, v, w) ∗ f)(x) = ψn(−2v · x)f(x+ w),

It remains to find the trace of these representations on the conjugacy classes. To do
so, we take as a basis for S(W ) the p delta functions

δy(x) =
{
1, if x = y;
0, otherwise
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for y ∈ V . In the case where an element of the form (t, 0, 0) acts on the space, each δy
is taken to ψn(t)δy, so the matrix has ψn(t) down the main diagonal and the trace is
pψn(t) = pζp

nt.
For the conjugacy class {(∗, v, w)}, we shall show that the trace is zero. These

elements of H(W ) send δy to the function x 7→ ψn(−2v ·x)δy(w+x) = ψn(−2v ·x)δy−w.
This means that each row of this transformations’s matrix has exactly one nonzero
entry, but it cannot be on the main diagonal, having been shifted cyclically by w
places. Thus the trace is zero. If w = 0, then all of the nonzero entries are still on the
main diagonal, but then the trace becomes∑

x∈V

ψn(−2v · x) =
∑
x∈V

ψn(x) = 0,

by Lemma Z and the nondegeneracy of the dot product on Fp.
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