
NDMI011 Combinatorics and Graph Theory∗

Notes by

Marcel K. Goh (Prague, Czech Rep.)

10 June 2019

1. PRELIMINARIES

We say that a function f(n) is O
(
g(n)

)
(read “big-oh of g(n)”) if there exist constants n0 and C such that

for all n ≥ n0, f(n) ≤ C · g(n). If the ratio f(n)
g(n) approaches 0 as n approaches infinity, then we say f(n) is

o
(
g(n)

)
(read “little-oh of g(n)”). If f(n) is both O

(
g(n)

)
and o

(
g(n)

)
, then f(n) is Θ

(
g(n)

)
(read “big-theta

of g
(
n)
)
”). Finally, if the ratio f(n)

g(n) approaches 1 as n approaches infinity, then we write f(n) ∼ g(n).

Let G = (V,E) be a graph. The graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A cycle
is a graph on v1, . . . , vn with edges {v1, v2}, . . . , {vn−1, vn}. A tree is a connected graph that contains no
cycle (i.e does not have a cycle as a subgraph).

Theorem D. In any graph G = (V,E), ∑
v∈V

deg v = 2 · |E|

Proof. Every edge {u, v} ∈ E adds 1 to the degree of u and adds 1 to the degree of v. Hence if you sum
over all vertices, each edge gets counted twice.

Theorem E. The number of vertices with odd degree is even.

Proof. Divide V into V1 and V2 where V1 is the set of vertices with odd degree and V2 is the set of vertices
with even degree. Then we have

∑
v∈V deg v =

∑
v∈V1

deg v +
∑

v∈V2
deg v. Observe that the sum over all

odd vertices
∑

v∈V1
deg v equals 2 · |E| −

∑
v∈V2

deg v = 2(|E| − x) for some x, meaning it is even. Since the
sum is even but each vertex has an odd degree, the number of vertices must be even.

Theorem T. A tree with n vertices has n− 1 edges.

Proof. Let G = (V,E) be a tree and let n denote |V |, the number of vertices. Using induction on n, we show
that it has n− 1 vertices. The base case n = 1 is easy, since a tree with only one vertex has no edges. Now
assume that a tree with n vertices has n− 1 edges and we consider the case where G has n+1 vertices. Let
us create G′ by removing a vertex from G. We cannot remove an internal vertex, since then G′ would not
be connected. So we must remove a leaf, along with the edge that connected it to G. Now G′ has n vertices,
so by the induction hypothesis it has n− 1 edges. This implies that G had n edges.

2. GENERATING FUNCTIONS

2.1. Power series and generating functions

Given an infinite sequence a0, a1, . . . = (ai)
∞
i=0, the power series

∞∑
i=0

aix
i

is called the generating function of (ai)
∞
i=0 and is denoted a(x). For example, the sequence 1, 1, 1, . . . has

generating function
∑∞

i=0 x
i, which converges to 1/(1 − x) for x ∈ (−1, 1). Since we only really care about

the coefficients of a generating function, we assume that x is within the power series’ interval of convergence.

∗ Course given by Prof. Andreas Feldmann at Charles University in Prague

1

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

2.2. Binomial coefficients

For r ∈ R and k ∈ N, the binomial coefficient is given by(
r

k

)
=

(
k−1∏
i=0

(r − i)

)
/k!

where
(
r
0

)
= 1. If r ∈ N, then we can think of

(
r
k

)
as the number of ways to choose k objects out of a pool

of r objects.

Theorem G (Generalised binomial theorem). For any r ∈ R,∑
i≥0

(
r

i

)
xi = (1 + x)r.

Proof. In this proof we will gloss over technicalities relating to convergence. Let a(x) denote (1+x)r. Then
the derivative of a(x) is a′(x) = r(1 + x)r−1, the second derivative a′′(x) is r(r − 1)(1 + x)r−2, and so on.
Generally,

a(i)(x) =

i−1∏
j=0

(r − j)

 (1 + x)r−i.

If we evaluate the function at x = 0, we get

a(i)(0) =

i−1∏
j=0

(r − j)

so we can use Taylor’s theorem to get

a(x) =
∑
i≥0

a(i)(0)

i!
xi

=
∑
i≥0

(
r

i

)
xi,

which is what we wanted.

2.3. Existence of a closed form

It is clear from the theorem above that the generating function for the sequence
(
r
1

)
,
(
r
2

)
, . . . is (1 + x)r.

We may wonder what kinds of sequences have a closed form generating function. The following theorem,
presented without proof, answers this question.

Theorem S. Let (ai)
∞
i=0 be a sequence of reals such that there exists some k > 0 for which |ai| ≤ ki for

every i ≥ 1. Then for all x in the interval (−1/k, 1/k), the power series

a(x) =

∞∑
i=0

aix
i

converges, so the generating function a(x) has a closed form. Moreover, for any arbitrarily small ϵ > 0,
the values of a(x) for x in the interval (−ϵ, ϵ) uniquely determine the sequence (ai)

∞
i=0 where, by Taylor’s

theorem, ai = a(i)(0)/i!

2.4. Application to counting

Generating functions give us a method for counting the number of elements with some parameter i. For
example, we could count the number of trees with i vertices or the number of steps performed by an algorithm
with input size i. Often, ai is defined inductively or recursively.

2

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

For example, suppose that for some number c our sequence ai is given by a0 = c, and ai = ai−1 + c for
i ≥ 1. Then we get that

a(x) =
∑
i≥0

aix
i

= cx0 +
∑
i≥1

(ai−1 + c)xi

= cx0 +
∑
i≥1

cxi +
∑
i≥1

ai−1

=
c

1− x
+ x · a(x).

This implies that a(x) = c/(1 − x), and by Taylor’s theorem, ai = a(0)(0)/i!. Calculating this directly can
be very tedious, so very often, we will express a(x) in terms of generating functions that we know. In the
case of this example, we note that

c

(1− x)2
= c · 1

1− x
· 1

1− x

= c

∑
i≥0

xi

∑
i≥0

xi


=
∑
i≥0

c(i+ 1)xi,

which gives us that ai = c(i+ 1) (which we could have easily gotten by observing the recurrence).

2.5. Operations on generating functions

Some useful operations on generating functions include:

Addition. a(x) + b(x) =
∑
i≥0

(ai + bi)x
i.

Multiplication. βa(x) =
∑
i≥0

(βai)x
i.

Scaling. a(βx) =
∑
i≥0

(βiai)x
i.

Gaps. a(xk) =
∑
i≥0

aix
ki.

Shift right. xa(x) =
∑
i≥0

(ai−1)x
i.

Shift left. (a(x)− a0) /x =
∑
i≥0

(ai+1)x
i.

Derivative. a′(x) =
∑
i≥0

(
(a+ 1)ai+1

)
xi.

Integral.

∫ x

0

a(x)dx =
∑
i≥1

(ai−1/i)x
i.

Convolution. a(x)b(x) =
∑
i≥0

(
i∑

k=0

akbi−k

)
xi.

Partial sums. a(x)/(1− x) =
∑
i≥0

∑
k≥0

ak

xi.

3

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

2.6. Some applications

Imagine a situation at a grocery store. A customer has six $1 coins, five $2 coins, and four $5 bills. Suppose
she has to pay $21. How many ways can she do this? To find the answer, we need only compute the
coefficient of x21 in the polynomial

(1 + x+ x2 + · · ·+ x6) · (1 + x2 + x4 + · · ·+ x10) · (1 + x5 + x10 + · · ·+ x20).

Now suppose that a box contains 30 red balls, 40 blue balls, and 50 white balls. In how many ways can one
draw 70 balls? As you may have suspected, we need to get the coefficient of x70 in

(1 + x+ · · ·+ x30) · (1 + x+ · · ·+ x40) · (1 + x+ · · ·+ x50).

It may be instructive to work through a full example. We will use generating functions to count binary trees.
A binary tree T is either empty (T = ∅) or consists of a root adjacent to a left subtree Tl and a right subtree
Tr. Let bn denote the number of binary trees with n vertices. We will try to find a closed formula for bn.
There is exactly one binary tree with 0 vertices (the empty one), and one binary tree with 1 vertex. From
the definition, n = 0 or n = 1+ nl + nr where nl = k and nr = n− 1− k for some k ∈ {0, . . . , n− 1}. Hence
we obtain the recurrence bn = b0 · bn−1 + b1 · bn−2 + · · · bn−1 · b0 for n ≥ 1, i.e.

bn =

n−1∑
k=0

bk · bn−1−k.

Then the generating function b(x) can be derived:

b(x) =
∑
n≥0

bnx
n

= 1x0 +
∑
n≥1

n−1∑
k≥0

bk · bn−1−k

xn

= 1 + x
∑
n≥0

n−1∑
k≥0

bk · bn−1−k

xn

= 1 + xb(x)b(x).

This implies that xb(x)2 − b(x) + 1 = 0, which means that

b(x) =
1±
√
1− 4x

2x

Which one is correct? Well, note that b(0) =
∑

n≥0 bn0
n = b0 = 1, whereas

lim
x→0

1 +
√
1− 4x

2x
= +∞.

We try the other root, starting with

lim
x→0

1−
√
1− 4x

2x
,

upon which we can apply l’Hospital’s rule to get a limit of 1. So this is the generating function we want.
Applying Newton’s formula and the scaling operation, we observe that

√
1− 4x =

(
1 + (−4x)

)1/2
=
∑
n≥0

(−4)n
(
1/2

n

)
xn.

4

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

We can substitute this into our generating function to get that

b(x) =
1

2x

1−
∑
n≥0

(−4)n
(
1/2

n

)
xn

 .

Since 1 =
∑

n≥0(−4)n
(
1/2
n

)
x0, we can further simplify, obtaining

b(x) =
1

x

∑
n≥1

−1

2
(−4)n

(
1/2

n

)
xn

=
∑
n≥0

−1

2
(−4)n+1

(
1/2

n+ 1

)
xn

=
∑
n≥0

1

n+ 1

(
2n

n

)
xn.

So the number of binary trees with n vertices is
(
2n
n

)
/(n+ 1). These are the Catalan numbers.

3. GRAPHS

3.1. Network flow

3.1.1. Edge capacities

Suppose we are given a directed graph G = (V,E) (E ⊆ V × V) with designated source s ∈ V and target
t ∈ V . To each edge e is assigned a capacity c(e), which may be a non-negative real number or +∞. Then an
s-t-flow is a function f : E → R such that for every edge e ∈ E, 0 ≤ f(e) ≤ c(e). These are called the capacity
constraints. Our flow must also obey the law of flow conservation, also known as Kirchhoff’s First Law (which
was originally observed in electrical circuits): For every vertex v ∈ V \ {s, t},

∑
uv∈E f(uv) =

∑
vu∈E f(vu).

We want to maximise the flow that leaves s, subject to these constraints. The value of an s-t-flow is

|f | =
∑
su∈E

f(su)− f(us),

and a max-flow is an s-t-flow with maximum value.
The intuitive way to check that a flow is maximal is to study “bottlenecks”. Concretely, if we let S ⊆ V

be such that s ∈ S and t /∈ S, then the set δ+(S) = {uv ∈ E : u ∈ S, v /∈ S} is an s-t-cut or s-t-edge-cut.
After removing δ+(S) from G, there is no longer a path from s to t, i.e. δ+(S) separates s from t. (Since we
only removed edges leaving S, there may still be a path from t to s.) The capacity of an s-t-cut is given by

c
(
δ+(S)

)
=

∑
uv∈δ+(S)

c(uv).

Then we can define a min-cut to be an s-t-cut with minimum capacity.

Lemma D. For any s-t-flow f and s-t-cut δ+(S),

|f | =
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e),

where δ−(S) is the set {uv : u /∈ S, v ∈ S}.

Proof. By flow conservation, we know that for every v ̸= s, t,∑
vu∈E

f(vu)−
∑
uv∈E

f(uv) = 0.

5

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

Then the value of the s-t-flow is the sum of all equations for the cut S:

|f | =
∑
v∈S

(∑
vu∈E

f(vu)−
∑
uv∈E

f(uv)

)
.

We need to consider three possible cases for an edge e = uv:

1. (u, v ∈ S) If both u and v are in S, then we will add f(uv) and then subtract f(uv), so this case does
not contribute to |f |.

2. (u ∈ S, v /∈ S) In this case, uv ∈ δ+(S), so we will have a contribution of +f(uv) to |f |.
3. (u /∈ S, v ∈ S) In this case, uv ∈ δ−(S), so we will have a contribution of −f(uv) to |f |.

This implies that

|f | =
∑

e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e),

which is exactly what we wanted to prove.

We can use this to derive an easy corollary:

Corollary. If f is a max-flow and δ+(S) is a min-cut, then |f | ≤ c
(
δ+(S)

)
.

Proof. By the preceding lemma, |f | ≤
∑

e∈δ+(S) f(e), which by capacity constraints is no greater than∑
e∈δ+(S) c(e). But by the definition of the capacity of a min-cut, this is just c

(
δ+(S)

)
.

In fact, the value of a max-flow equals the capacity of a min-cut, but the other inequality requires a
more involved proof.

Theorem C. If f is a max-flow and δ+(S) is a min-cut, then |f | = c
(
δ+(S)

)
.

Proof. By the preceding corollary, it suffices to show that |f | ≥ c
(
δ+(S)

)
. For any max-flow f , the idea is

to construct some s-t-cut δ+(S) with |f | = δ+(S). This would imply that any min-cut would have capacity
no greater than |f |.

Consider the following procedure. We start with S ← {s}. While there exists an edge uv ∈ δ+(S) such
that c(uv) > f(uv) or there exists an edge vu ∈ δ−(S) such that f(uv) > 0, we add v to S. The claim is that
if f is a max-flow, then this algorithm will produce an S such that t /∈ S, i.e. S is an s-t-cut. If this claim is
true, then we are done; since

∑
e∈δ−(S) = 0 after the algorithm terminates, we will have |f | = c

(
δ+(S)

)
.

Suppose, towards a contradiction, that t ∈ S. Then there exists a sequence of vertices v0, . . . , vk ∈ S
such that v0 = s, vk = t, and for all i ∈ {0, . . . , k − 1}, either

a) vivi+1 ∈ E and c(vivi+1) > f(vivi+1), or

b) vi+1vi ∈ E and f(vi+1vi) > 0.

For each i, define a small real number ϵi given by

ϵi =

{
c(vivi+1)− f(vivi+1) if case (a) holds
f(vi+1vi) if case (b) holds

Then we can let ϵ = min{ei : 0 ≤ i ≤ k − 1}. Note that, by construction, ϵ > 0.
Now we create a new function f ′ : E → R given by

f ′(e) =

 f(e) + ϵ if e satisfies case (a)
f(e)− ϵ if e satisfies case (b)
f(e) otherwise

The claim is that f ′ is an s-t-flow. The values of f ′(e) are non negative, because f ′(e) ≥ f(e) ≥ 0 in case a),
and in case b), f ′(e) = f(e)− ϵ ≥ 0. The capacity constraints are satisfied, since in case a), ϵ ≤ c(e)− f(e)
implies that f ′(e) = f(e) + ϵ ≤ c(e); and in case b), f ′(e) ≤ f(e) ≤ c(e). And we can see that the law of

6

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

flow conservation is obeyed as well, since for every v ∈ V \ {s, t}, either flow is unchanged at v or exactly
two edges are changed (one adds ϵ and the other one subtracts ϵ from f).

Computing the value of the flow f ′, we find that

|f ′| =
∑
sv∈E

f ′(sv)−
∑
vs∈E

f ′(vs) = |f |+ ϵ.

This implies that f is not a max-flow, a contradiction.

So to determine if a flow is maximal, we can figure out what S is and see if t ∈ S. If not, then f is a
max-flow and δ+(S) is a min-cut. The proof of the theorem also suggests an algorithm to compute max-flow
and min-cut:

Algorithm M (Find max-flow/min-cut). Given a directed graphG = (V,E), this algorithm finds a max-flow
f and a set S ⊂ V such that δ+(S) is a min-cut.

M1. [Initialise.] Set i← 0 and f0(e)← 0 for every e ∈ E.

M2. [Find Si] Construct the set Si for the flow fi using the procedure outlined in the preceding proof.

M3. [Is t in Si?] If t /∈ Si, the flow fi is maximal. Output fi and Si.

M4. [Increase flow.] Find the “path”P from s to t in S, and compute ϵ. Let fi+1 be the result of augmenting
fi by ϵ along P . Set i← i+ 1.

M5. [Repeat.] Go to step M2.

It is clear that if the algorithm terminates, it will output the correct answer. So it is natural to wonder
when the algorithm is sure to terminate. In the case of integer capacities, termination is easy to prove:

Theorem I. If for all e ∈ E, c(e) ∈ N0, then the capacity n of the min-cut is integral and Algorithm M
terminates in at most n iterations.

Proof. We prove, by induction on i, that at every step of the algorithm, |fi| ∈ N0. The base case is simple
because the algorithm starts with |f0| = 0. Now assume that fi ∈ N0. In the step that increases i to
i + 1, we choose ϵ to be the minimum value computed over a path P of edges. So for some e ∈ P , either
ϵ = c(e)− fi(e) or ϵ = fi(e). Since both c(e), fi(e) ∈ N0, we have that ϵ ∈ N0 and the value of the flow at
each iteration is integral.

Then because ϵ > 0, we have from integrality that ϵ ≥ 1 meaning that for every iteration of the
algorithm, the value |fi+1| = |fi|+ ϵ ≥ |fi|+ 1. Since the value of the max-flow is exactly n, the algorithm
terminates in at most n iterations.

3.1.2. Vertex capacites

Instead of constraining flow at the edges, we can instead assign capacities d(v) to vertices v ∈ V \ {s, t}.
Then for all v ∈ V \ {s, t}, an s-t-flow f : E → R must satisfy

∑
uv∈E f(uv) ≤ d(v) and

∑
uv∈E f(uv) =∑

vu∈E f(vu). Note that by this definition, if st ∈ E, then the value of the max-flow will be infinite, so
assume that st /∈ E.

Now we define an s-t-vertex-cut to be a set T ⊆ V \ {s, t} such that the graph G \ T has no path from
s to t. For ease of notation, let d(T) =

∑
v∈T d(v).

Theorem J. Let f be a max-flow in a network with vertex capacities. If T is a min-cut, then |f | = d(T),
and furthermore, if all capacities are integers, then there is an integer max-flow.

Proof. We simply convert our vertex-constrained network to an edge-constrained one. Replace each con-
strained vertex vi with two new vertices vi1 and vi2. Connect these vertices with a single edge ei with
c(ei) = d(vi). Set the capacties of all other edges in the new graph to +∞. Then the theorem follows from
our previous theorems regarding edge-constrained networks.

3.2. Bipartite matchings

A graph G = (V,E) is bipartite if V can be split into disjoint subsets A and B such that every edge in E
has one endpoint in A and the other in B. A matching is a set M ⊆ E such that no two edges of M share a
vertex. A maximum matching is matching of maximum size.

7

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

Consider the so-called marriage problem. Given a set A of boys and B of girls, can we marry off all
boys to girls that they know? We can model this problem with a bipartite graph (A∪B,E), where an edge
exists between a boy and a girl if they know each other. First we define the set of neigbours of a vertex set
S ⊆ A to be N(S) = {v ∈ B : uv ∈ E and u ∈ S}. Then the following theorem tells us exactly when the
marriage problem is solvable.

Theorem H (Hall). A bipartite graph G = (A∪B,E) (with A and B disjoint) has a matching M ⊆ E of
size |M | = |A| if and only if |N(S)| ≥ |S| for all S ⊆ A.

Proof. The “only if” direction is obvious. We prove the “if” direction by contrapositive, i.e. if there is no
matching of size |A| then there exists some S ⊆ A such that |N(S) < |S|.

The idea is to use the vertex version of the max-flow min-cut theorem. We construct a directed graph
H = (V ′, E′) from G. Introduce two new vertices s and t and set V ′ = A ∪ B ∪ {s, t}. We want to connect
s to every vertex in A and connect every vertex in B to t. Then for every edge already in the graph, ensure
it is directed from A to B. So

E′ = {su : u ∈ A} ∪ {vt : v ∈ B} ∪ {uv : uv ∈ E, u ∈ A, v ∈ B}.

Now we set all the capacities on every vertex v ∈ A ∪B to 1. We know from the max-flow min-cut theorem
that there exists an integer max-flow, call it f , which is a 0-1 flow, meaning that f(e) ∈ {0, 1} for all e ∈ E′.
Note that if f ≥ |A|, then there exists a matching of size |A|, since the 0-1 flow uses at most one incoming
and one outgoing edge of any vertex in V \ {s, t}.

But we assumed that no matching of size |A| exists, so |f | < |A|. Let T be a min-cut. From the max-flow
min-cut theorem, we know that d(T) = |f | < |A|. Consider the sets X = A ∩ T and Y = B ∩ T . Since
|X|+ |Y | = |T | =

∑
v∈T 1 = d(T), we have that |Y | < |A| − |X|. There is no edge from A \X to B \ Y , as

T is an s-t-vertex-cut. So N(A \X) ⊆ Y in G and thus |N(A \X)| ≤ |Y | < |A| − |X| = |A \X|. The set
A \X is exactly the S we were looking for.

In a graph G = (V,E), a vertex cover is a set C ⊆ V such that every edge is incident to at least one
vertex in C. A minimum vertex cover is a vertex cover of minimum cardinality. Notice that every vertex
cover of G is an s-t-vertex cut in H, otherwise there would be a path from s to t. So we can derive the
following theorem as a corollary.

Theorem K (Kőnig’s theorem). Let G be a bipartite graph with maximum matching M and minimum
vertex cover C. Then |M | = |C|.

3.3. Graph connectivity

3.3.1. Definitions and inequalities

A graph G = (V,E) is connected if there is a path between any two vertices. Otherwise, we say G is
disconnected. A component of G is a maximal connected subgraph. If G is connected and removing a set W
of vertices or edges causes it to become disconnected, then we say W separates G. We have special names
for W if |W | = 1. If such a W ⊆ V , we call it a cut vertex. If W ⊆ E, |W | = 1, we call W a bridge.

A graph G = (V,E) is k-connected if |V | > k and no vertex set W ⊆ V of size |W | < k separates G. Note
that the complete graph Kn is (n − 1)-connected and that if G is k-connected then it is also k′-connected
for any k′ ≤ k. If |V | ≥ 2 and no edge set W ⊆ E of size |W | < k separates G, then G is k-edge-connected.

The connectivity of a graph G, denoted κ(G), is the maximum k ∈ N such that G is k-connected.
Likewise, the edge-connectivity λ(G) of a graph G is the maximum k such that G is k-edge-connected. Note
that if G is not a complete graph, then both κ(G) and λ(G) are at most |V | − 2.

Lemma K. Let G = (V,E) be a graph. Then for all edges uv ∈ E, κ(G \ {uv}) ≥ κ(G)− 1.

Proof. Remove an edge uv from G. Now we find a set of vertices W , with |W | = κ(G\{uv}), that disconnects
G. So V has been split into three disjoint subsets L∪W ∪R. If u and v both lie in L or both lie in R, then
κ(G) ≤ |W | = κ(G \ {uv}). If u ∈ L and v ∈ R (or vice-versa), then if there exists a vertex w ̸= u ∈ L, then

8

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

W ∪ {u} separates G, implying that κ(G) ≤ |W ∪ {u}| ≤ κ(G \ {u, v}) + 1. The last case is if L = {u} and
R = {v}. Then |V | = |W ∪ {u, v}| ≤ κ(G \ {u, v}+2, meaning that κ(G) ≤ |V | − 1 ≤ κ(G \ {u, v}) + 1.

Lemma R. Let G = (V,E) be a graph with |V | = n. Then the following both hold:

1. κ(G)− 1 ≤ κ(G− v) for all v ∈ V .

2. λ(G)− 1 ≤ λ(G− e) ≤ λ(G) for all e ∈ E.

Proof. We prove each part separately.

1. If G = Kn, then G−v = Kn−1, so κ(G)−1 = n−2 = κ(G−v) and we are done. So assume G ̸= Kn. If
G ̸= Kn and G−v = Kn−1, then there must exist some vertex u ∈ V such that uv /∈ E. Then removing
the set W = V \ {u, v} separates G, so κ(G) ≤ |W | = n− 2 = κ(G− v). The last case is that G ̸= Kn

and G− v ̸= Kn−1. Then there exists a W with |W | = κ(G− v) such that W ∪ {v} separates G, which
means that κ(G) ≤ |W ∪ {v}| = κ(G− v) + 1.

2. There exists a set W ⊆ E with |W | = λ(G − e). So e /∈ W but W ∪ {e} separates G. So λ(G) ≤
|W ∪ {e}| = λ(G− e) + 1. For the second inequality, let W be the set that separates G, so |W | = λ(G).
Then W \ {e} separates G− e. So λ(G− e) ≤ |W \ {e}| ≤ |W | = λ(G).

To summarise, removing an edge from G causes both κ(G), λ(G) to decrease by at most 1. Removing
a vertex from G can cause κ(G) to decrease by at most 1 as well, but may cause λ(G) to decrease a lot
(possibly down to 0). The next lemma describes the relationship between vertex- and edge-connectivity.

Lemma C. Let G = (V,E) be a graph and let δ(G) denote the minimum degree over all vertices in G.
Then

κ(G) ≤ λ(G) ≤ δ(G).

Proof. The inequality λ(G) ≤ δ(G) is easy, because if v is the vertex of minimum degree in G, then removing
the δ(G) edges adjacent to v separates v from the rest of the graph.

To show that κ(G) ≤ λ(G), we use that κ(G − e) ≥ κ(G) − 1 for all e ∈ E. Suppose λ(G) = n. So
removing a set of edges {e1, . . . , en} causes G to be disconnected. This means that 0 = κ(G−{e1, . . . , en}) ≥
κ(G)− n, which means that κ(G) ≤ n = λ(G).

3.3.2. Connectivity and paths

For the following important theorem, we will need a new definition. We say two s-t-paths P and Q are
independent if V (P) ∩ V (Q) = {s, t}. The paths are edge-disjoint if E(P) ∩ E(Q) = ∅.

Theorem M (Menger). Let G be a graph. The following both hold:

1. G is k-connected if and only if there are k independent paths between any two vertices s and t.

2. G is k-edge-connected if and only if there are k edge-disjoint paths between any two vertices s and t.

Proof. The “if” direction is left as an exercise for the student. To prove the “only if” direction, we use the
max-flow min-cut theorem. We construct a directed graph G′ from G:

V (G′) = V (G)

E(G′) = {uv, vu : uv ∈ E(G)}

To prove the vertex version of the theorem, for every vertex v ∈ V ′ \{s, t}, we set a vertex capacity d(v) = 1.
To prove the edge version of the theorem, we set c(e) = 1 for all edges in E(G′). Now we consider the vertex
and edge cases separately.

1. Assume that st /∈ E(G′). Any s-t-vertex cut of G′ separates G; since any s-t-path in G′ is also a
t-s-path, the s-t-vertex cut also separates t from s. Let T denote a minimum-cardinality s-t-vertex-cut
in G′ and we get that d(T) ≥ κ(G). There exists a 0-1 flow with |f | ≥ κ(G). So at each vertex,
the number of incoming edges is at most 1 and the number of outgoing edges is at most 1 as well.
This implies that there are |f | independent paths from s to t. But by the max-flow min-cut theorem,

9

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

|f | = d(T) ≥ κ(G) = k. If it so happens that st ∈ E(G), then (s, st, t) is an additional independent
s-t-path to those in G− st and we know that κ(G− st) ≥ κ(G)− 1. Hence G being k-connected implies
that there are at least k independent paths between any s, t.

2. In the case of edge capacities, any s-t-edge-cut separates G as any t-s-path is also an s-t-path in G’. Let
S denote a minimum s-t-edge cut. Then c(E) ≥ λ(G). Again, there exists a 0-1 flow f with |f | ≥ λ(G),
but this time it may be possible that a vertex has many incoming and outgoing edges. However, we
know that the number of incoming edges that carry flow must equal the number of outgoing edges that
carry flow at any vertex. Let H = (V, F) be a subgraph of G, where F = {e ∈ E(G) : f(e) = 1}.
While there exists an s-t-path P in H, we can remove any all edges of P from H while maintaining flow
conservation at every vertex v ∈ V \ {s, t}. We can repeat the algorithm as many times as there are
edges coming out of S, so at least |f | times. Hence |f | ≥ λ(G) ≥ k.

3.3.3. 2-connectivity and ear decompositions

An ear decomposition of a graph G is a sequence G0, G1, . . . , Gk of subgraphs of G such that G0 is a cycle
and for any i ∈ {1, . . . , k}, the graph Gi is obtained from Gi−1 by adding a path Pi to Gi−1 such that Pi

shares exactly its endpoints with Gi−1. Each of these paths Pi is called an ear.

Theorem E. A graph is 2-connected if and only if it has an ear decomposition.

Proof. The only way for a graph to not be 2-connected is for it to have a cut vertex. So the “if” direction
is easy, because if there is an ear decomposition, there is no cut vertex.

To prove the “only if” direction, suppose that G is a 2-connected graph, and let G0 be an arbitrary cycle
in G. To get from any subgraph Gi−1 to Gi, we need to find an ear. Since G is connected and Gi−1 ̸= G,
there exists an edge uv ∈ E(G) \ E(Gi−1) such that u ∈ V (Gi−1). If v ∈ V (Gi−1), then uv is an ear and
we can set Pi = uv. Otherwise, there exists an edge uw ∈ E(Gi−1). This we know because G0 ⊆ Gi−1 so
|V (Gi−1)| ≥ 3 and Gi−1 is connected.

By Menger’s theorem, there exist at least 2 independent paths between v and w in G. So there exists
some v-w-path P such that u /∈ V (P). Let u′ be the first vertex of P that is in Gi−1. Then we can append
u to the front of P to get a path (u, uv, v, . . . , u′), which is an ear.

For a graph G, we define an edge addition is the operation of adding an edge between two vertices that
were not connected in G. An edge subdivision is the operation of splitting an edge into two edges, with a
new vertex in between them.

Corollary. A graph is 2-connected if it can be obtained from K3 by a sequence of edge additions and
subdivisions.

This corollary is immediate from the observation that any starting cycle G0 is a subdivision of K3, and
any ear Pi is a subdivision of an edge addition.

3.4. Counting spanning trees

A spanning tree T of a graph G is a subgraph that contains all vertices in G and is a tree with edges from
G. Let T (G) denote the number of spanning trees of a graph G. For example, T (K3) = 3. We want to find
out the value of T (G) for different classes of graphs.

In our investigation of T (Kn), we will need to define a certain type of finite sequence. A Prüfer code is
a sequence (p1, . . . , pn−2) ∈ {1, . . . , n}n−2. It turns out that there is a bijection between Prüfer codes and
trees of length n − 2 and trees on n vertices. First we consider the algorithm for getting the Prüfer code
from a tree on n vertices:

Algorithm P (Build Prüfer code). Given a tree with n vertices T , this algorithm constructs a Prüfer code.

P1. [Initialise.] Set i← 1, T0 ← T .

P2. [Get next element.] Let li denote the leaf of Ti−1 with smallest index. Set pi equal to the (single)
neighbour of li in Ti−1.

P3. [Remove a leaf.] Set Ti ← Ti−1 − li.

10

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

P4. [Done?] If i = n− 2, we output the sequence (p1, . . . , pn−2).

P5. [Repeat.] Otherwise, set i← i+ 1 and return to step P2.

There is a reverse algorithm that builds a tree from a Prufer code:

Algorithm T (Build a tree). Given a Prüfer code (p1, . . . , pn−2), this algorithm outputs a tree with n
labelled vertices.

T1. [Calculate li.] For every i ∈ {1, . . . , n}, let li denote the number of times i appears in the Prüfer code,
plus 1.

T2. [Initialise.] Let T0 ← (∅, ∅) to begin with. Set i← 1.

T3. [Add an edge.] Let j be the smallest index with lj = 1. Set Ti ← Ti−1 + {pi, j}, where the addition
operation denotes adding the edge as well as the vertices pi, j, if one (or both) of them is not yet in the
tree.

T4. [Update l.] Set lpi ← lpi − 1 and lj ← lj − 1.

T5. [Done?] If i = n− 2, we have worked through the whole Prüfer code. There are two remaining non-zero
elements in l, call them lx and ly. Output Ti + {lx, ly}.

T6. [Repeat.] Otherwise, set i← i+ 1 and return to step T3.

Since Algorithms P and T are both deterministic and they are inverse to one another, this implies a
bijection between trees on n vertices and Prüfer codes of length n− 2. Hence we have the following formula.

Theorem C (Cayley’s formula). The number of spanning trees of a complete graph with n vertices is

T (Kn) = nn−2.

Proof. Since every possible edge between two vertices exists in Kn, the number of spanning trees of Kn is
exactly the number of trees with n vertices. This is the same value as the number of Prüfer codes of length
n− 2, which is the value nn−2, since there are n choices for each of n− 2 elements.

The following theorem gives a formula for the number of spanning trees of Kn, after a single edge is
removed.

Theorem L. Let e be an edge in Kn. Then

T (Kn − e) = (n− 2)nn−3.

Proof. The idea is to double-count the number of edges in all spanning trees of Kn. Each spanning tree has
n− 1 edges so the total number of edges is (n− 1)nn−2. Now let ke denote the number of spanning trees of
Kn containing e. By symmetry, this is the same for any choice of e in Kn. There are

(
n
2

)
edges in Kn, each

contained in ke trees. This implies that (
n

2

)
ke = (n− 1)nn−2.

Solving for ke, we obtain the value ke = 2nn−3. Therefore T (Kn − e) = T (Kn) − ke = nn−2 − 2nn−3 =
(n− 2)nn−3, which is what we wanted.

4. EXTREMAL THEORY

4.1. Extremal graphs

This section deals with the general question: “What is the extremal (maximum/minimum) number of objects,
subject to restriction R?” Some simple examples from graph theory include

• Question: What is the maximum number of edges in a graph with n vertices? Answer:
(
n
2

)
.

• Question: What is the maximum number of edges in a graph with no cycles? Answer: n− 1.

11

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

A harder question is “What is the maximum number of edges in a graph not containing C3 as a
subgraph?” First let us consider a class of graphs that definitely do not contain C3 as a subgraph: bipartite
graphs (they do not contain any odd cycles). What is the maximum number of edges in a bipartite graph?
Well, the complete bipartite graph Ka,b has ab edges, so we want to maximise the product ab when a+b = n.
Intuitively this is when a and b are as close to n/2 as possible. So we get that the number of edges in Ka,b

is at least ⌊n2/4⌋, thus we have a lower bound for the number of edges in a graph not containing C3. The
following theorem proves that the bound is tight.

Theorem T. The maximum number of edges of any graph G not containing C3 as a subgraph is at most
⌊n2/4⌋.

Proof. We want to show that there exist a, b ∈ N such that |E(G)| ≤ |E(Ka,b)| ≤ ⌊n2/4⌋. To this end, we
find disjoint subsets A,B ⊆ V (G) such that A ∪B = V (G). and let H = Ka,b on A and B.

Then it suffices to show that for any v ∈ V (G), degG(v) ≤ degH(v), since the number of edges in any
graph equals the sum over degrees of vertices, divided by 2. So let v0 be a vertex of maximum degree in G.
Then we can set B = NG(v0) and A = V \ B Now for any v ∈ A, degH(v) = |B| = degG(v0) ≥ degG(v).
Note that in G, no two vertices of B are adjacent, since then there would be a cycle of length 3. Then for
any v ∈ B, NG(v) ⊆ A, hence degG(v) ≤ |A| = degH(v).

Compared to
(
n
2

)
, ⌊n2/4⌋ is still quite a lot, but remember that disallowing any cycles at all, we have a

much smaller bound of n − 1. A natural question is “How long do forbidden cycles have to be so that the
maximum number of edges is much smaller than

(
n
2

)
?” As we will see from the following theorem, disallowing

C4 lowers this bound quite a bit.

Theorem F. The maximum number of edges of any graph G not containing C4 as a subgraph is at most
(n3/2 + n)/2.

Proof. The idea is to double-count the size of the set M of pairs ({u, u′}, v), where u ̸= u′ ̸= v and
uv, u′v ∈ E. Note that for any set {u, u′}, there is at most one v ∈ V such that ({u, u′}, v) ∈ M , because
otherwise we would have a cycle of length 4, which is forbidden. This implies that |M | ≤

(
n
2

)
, which is the

number of sets {u, u′}.
Another way to count |M | is to consider the number of sets {u, u′} that are contributed to by each

v ∈ V . For every set {u, u′} ⊆ N(v) we get a pair ({u, u′}, v) ∈M , so v contributes
(
deg(v)

2

)
elements to M .

For ease of notation, let us number the vertices V = {1, . . . , n} and let di denote deg(i). Then

|M | =
n∑

i=1

(
di
2

)
≤
(
n

2

)
.

To get a bound on the number of edges, we will relate (
∑n

i=1 di)/2 to |M |. We know that
(
n
2

)
≤ n2/2.

Without loss of generality, we may assume that di ≥ 1 for all i ∈ V , since adding an edge between a vertex
i with di = 0 to any other vertex j increases the number of edges without introducing a C4. Therefore,(

di
2

)
=

di(di − 1)

2
≥ 1

2
(di − 1)2

for every i ∈ V . This implies that
n∑

i=1

(di − 1)2 ≤ n2.

Now we use the famous Cauchy-Schwarz inequality, which applies to vectors (x1, . . . , xn), (y1, . . . , yn) ∈ Rn:

n∑
i=1

xiyi ≤

√√√√ n∑
i=1

x2
i

√√√√ n∑
i=1

y2i .

12

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

We apply the formula with xi = di − 1 and yi = 1 to obtain

n∑
i=1

(di − 1) · 1 ≤

√√√√ n∑
i=1

(di − 1)2

√√√√ n∑
i=1

1 ≤
√
n2
√
n = n3/2.

Because
∑n

i=1(di − 1) =
∑n

i=1 di − n, we get
∑n

i=1 di ≤ n3/2 + n. So we can put a bound on the number of
edges:

|E| = 1

2

n∑
i=1

di ≤
n3/2 + n

2
.

4.2. Partially-ordered sets

A partially-ordered set or poset is a pair (L,⊆) where ⊆ is a partial order on the set L ⊆ 2X over X =
{1, . . . , n}. A chain is a subset {A1, . . . , Ak} of L such that A1 ⊆ A2 ⊆ · · · ⊆ Ak. An antichain or
independent set system is a subset {A1, . . . , Ak} of L such that Ai ̸⊂ Aj for all i, j ∈ {1, . . . , k}, i ̸= j. A
chain is maximal if adding any set breaks the chain property.

The maximum length of a chain in (L,⊆) is |X| + 1, where X denotes the motherset. This is because
∅ can be part of the chain as well. Now consider the maximum length of an antichain. One way to get an
antichain is to take all sets A ∈ L such that |A| = i for some i. This number is at least

(
n
i

)
≤
(

n
⌊n/2⌋

)
(in the

case that L = 2X). The following theorem gives an upper bound:

Theorem S (Sperner). Any antichain of a poset of X = {1, . . . , n} has size at most
(

n
⌊n/2⌋

)
Proof. We will work with L = 2X . Let an antichain M ⊂ 2X be given. Our goal is to bound the cardinality
of M . The idea is to double count the number of pairs (R,A) where A ∈ M and R is a maximal chain
containing A. Notice that a maximal chain contains exactly one set of size i for i ∈ {0, . . . , n}:

∅ ⊆ {x1} ⊆ {x1, x2} ⊆ · · · ⊆ {x1, x2, . . . , xn}.

where x1 . . . xn are elements of X written in some order. This implies that the number of maximal chains
is n! as every possible ordering defines a chain. By observation, any R contains at most one A ∈M , so the
number of pairs (R,A) is at most n!.

The other way we will count the pairs is to ask how many maximal chains actually contain a set A ∈M .
If R is made up of elements x1, . . . , xn as shown above, then A ∈ R if and only if A = {x1, . . . , xk} for
some k. Hence to form R we first introduce x1, . . . , xk in k! ways, then xk+1, . . . , xn in (n− k)! ways, so the
number of pairs (R,A) is ∑

A∈M

|A|!(n− |A|)! ≤ n!

Dividing by n! on both sides of the equation we get that∑
A∈M

|A|!(n− |A|)!
n!

=
∑
A∈M

(
n

|A|

)−1

≤ 1.

We know that
(

n
|A|
)
≤
(

n
⌊n/2⌋

)
, hence we may replace the reciprocal of the former with the reciprocal of the

latter to get

1 ≥
∑
A∈M

(
n

⌊n/2⌋

)−1

=
|M |(
n

⌊n/2⌋
) ,

which means that |M | ≤
(

n
⌊n/2⌋

)
.

5. FINITE PROJECTIVE PLANES

Let X be a finite point set and L ⊆ 2X be a set of subsets of X. (X,L) is called a finite projective plane if
the following properties hold:

13

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

P0) There exists a set F ⊆ X such that |F | = 4 and for all L ∈ L, |F ∩ L| ≤ 2.

P1) For all L1, L2 ∈ L with L1 ̸= L2, we have |L1 ∩ L2| = 1.

P2) For all x1, x2 ∈ X with x1 ̸= x2, there is exactly one L ∈ L such that x1, x2 ∈ L and we may denote it
L = x1x2.

We call any x ∈ X a point and any L ∈ L a line. Finite projective planes have very interesting
“symmetrical” properties.

Lemma Z. Let (X,L) be a finite projective plane. Then for all L,L′ ∈ L, there exists an z ∈ L such that
z /∈ L ∪ L′

Proof. By (P0), there exists a set F ⊆ X with |F | = 4 and |F ∩ L| ≤ 2 for a |F ∩ L′| ≤ 2. If F is a proper
subset of L∪L′, then we’re done, because z ∈ F . So assume F ⊂ L∪L′: say F = {a, b, c, d}, F ∩L = {a, b},
and F ∩ L′ = {c, d}. Then by (P2), there exist lines L1 = ac and L2 = bd; and by (P1), there exists a point
z ∈ L1 ∩ L2. We claim that z /∈ L ∪ L′.

Suppose, towards a contradiction, that z ∈ L. Then since, by (P1), |L ∩ L1| = 1 and z ∈ L1, we have
that z = a. This implies that L2 contains a, b, d. So |F ∩ L2| ≥ 3, a contradiction to (P0). An analogous
argument can be made for L′ so we are done.

Lemma C. Let (X,L) be a finite projective plane. Then for all L,L′ ∈ L, |L| = |L′|.

Proof. The idea is to find a bijection ϕ : L→ L′. By the preceding lemma, there exists some z /∈ L ∪ L′, so
for any x ∈ L, we let ϕ(x) be the point in L′ ∩ zx. The function ϕ is well-defined, since zx exists by (P2),
and |L′ ∩ zx| = 1 by (P1).

Now we prove that ϕ is a bijection. Let y ∈ L′ be given. It suffices to show that |ϕ−1(y)| = 1. Let
x ∈ L∩ yz. Then the set {x, z} ⊆ yz ∩ xz, i.e. |yz ∩ xz| ≥ 2, so by (P1), yz = xz. This means that ϕ(x) = y
and x is unique by (P1), so |ϕ−1(y)| = 1.

The order of a finite projective plane (X,L) is |L| − 1 for any L ∈ X.

Theorem F. Let (X,L) be a finite projective plane of order n. Then the following statements all hold:

1. Exactly n+ 1 lines pass through any point x ∈ X.

2. |X| = n2 + n+ 1.

3. |L| = n2 + n+ 1.

Proof. First we show that for any x ∈ X, there exists some line L ∈ L such that x /∈ L. By (P0), there exists
some F = {a, b, c, d} and without loss of generality we will assume that x /∈ {a, b, c}. So ab∩ F = {a, b} and
ac∩F = {a, c}. Now if x = d, then x /∈ ab and we’re done. If x ∈ ab, then x /∈ ac and if x ∈ ac, then x /∈ ab,
since |ab ∩ ac| = 1.

Let x ∈ X be given and let L be a line in L such that x /∈ L. Now we may prove each part of the
theorem.

1. For all y ∈ L, there exists a line xy passing through x. There are n + 1 points y ∈ L, so there are at
least n+1 lines passing through x. Now for all L′ ∈ L such that x ∈ L′, |L∩L′| = 1 by (P1), so L′ was
already counted above. So there are exactly n+ 1 lines through x.

2. Let Li = xxi where xi ∈ L, i ∈ {1, . . . , n + 1}. By (P1), Li ∩ Lj = {x} for all i ̸= j. As |Li \ {x}| = n
we have

|X| ≥ |
n+1∪
i=1

Li| = (n+ 1)n+ 1 = n2 + n+ 1,

so |X| ≥ n2+n+1. Now we show that for all p ∈ X, there exists an i ∈ {1, . . . , n+1} such that p ∈ Li.
If p = x, this is clearly true, so assume p ̸= x. Then px ∩ L = {xi} for some i by (P1). So px = Li for
some i and we already counted p above. So |X| = n2 + n+ 1.

3. This follows from item 2 and duality, which we will introduce next.

The incidence graph of a finite projective plane (X,L), is a bipartite graph G = (V,E) with V = X ∪L
and E = {xL : for all pairs x, L such that x ∈ L}. The concept of duality involves switching the roles of X
and L in this bipartite graph, interpreting X as lines and L as points.

14

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

Formally, the dual of a finite projective plane (X,L) is the set system (L,Λ) where Λ ∈ 2L contains an
element {L ∈ L : x ∈ L} for every x ∈ X.

Lemma D. The dual (L,Λ) of a finite projective plane (X,L) is also a finite projective plane.

Proof. We show that (L,Λ) satisfies each of (P0), (P1), and (P2).

P1) We need to find lines L1, L2, L3, L4 such that any for any λ ∈ Λ, with λ = {L ∈ L : x ∈ L} for some
x ∈ X, the point x is contained in at most two of L1, L2, L3, L4. Let F = {a, b, c, d} be the set given
by applying (P0) to (X,L). Let L1 = ab, L2 = cd, L3 = ad, L4 = bc. Suppose, towards a contradiction,
that x is in three of these lines. Without loss of generality, suppose x ∈ L1 ∩ L2 ∩ L3. By (P1) for
(X,L), |Li ∩ Lj | for all i ̸= j. Since x ∈ L1 ∩ L3, we have that x = a. But since x ∈ L2 ∩ L3, we have
that x = d. This is a contradiction, since a ̸= d. The same is true for any other triple of these four lines.

P2) Let λ1, λ2 ∈ Λ, λ1 ̸= λ2 be given, i.e. λ1 = {L ∈ L : x1 ∈ L} and λ2 = {L ∈ L : x2 ∈ L} for some points
x1 ̸= x2. We need that |λ1 ∩ λ2| = 1, but this follows from (P2) for (X,L), since x1 and x2 intersect at
exactly one line.

P3) Let L1, L2 ∈ L with L1 ̸= L2. It suffices to show that there exists a unique λ ∈ Λ such that L1 ∈ λ and
L2 ∈ λ. But since λ = {L ∈ L : x ∈ L} for some x, this is exactly (P1) for (X,L).

Corollary. The order of the dual finite projective plane is the same as the order of the original.

Proof. For any λ ∈ Λ of the dual, |{L ∈ L : x ∈ L}| = n+ 1. This implies that the order or (L,Λ) is n.

One may wonder whether there is a finite projective plane of any order. The answer is no. There are no
finite projective planes of order 1, 6, or 10. There are finite projective planes of order 3, 4, 5, 7, 8, 9, and 11.
Whether there is a finite projective plane of order 12 is an open problem. The existence of finite projective
planes of some higer orders is known though, as stated by the following theorem.

Theorem P. A finite projective plane exists of order n if n is a prime power.

We will not present the proof, which follows from Fn being a field.

A corollary of this theorem is that there are infinitely many finite projective planes. Recall that a graph
on n vertices without C4 as its subgraph has at most (n3/2 + n)/2 edges. Then a corollary of the infinity of
finite projective planes is given below.

Corollary. For infinitely many values of n there is a graph on n vertices without C4 as a subgraph that
contains at least (n/2)3/2 edges.

Proof. Consider the incidence graph of the finite projective plane (X,L). The number of vertices n =
|X|+ |L| = 2(n2 + n+1). Then for all L ∈ L, since |L| = m+1, the degree of L in G is m+1 as well. This
means that |E| = (m+ 1)|L| = (m+ 1)(m2 +m+ 1) ≥ (m2 +m+ 1)3/2 = (n/2)3/2. So the incidence graph
has at least (n/2)3/2 edges, so we just need to show that it does not have C4 as a subgraph. This is easy
because a C4 in the bipartite incidence graph implies that the intersection of two lines L ∩ L′ contains two
points x, x′, which contradicts (P1).

6. LATIN SQUARES

A Latin square of order n is a matrix A ∈ {1, . . . , n}n×n such that for any row r, Ari ̸= Arj if i ̸= j and
for any column c, Aic ̸= Ajc if i ̸= j. Two Latin squares A and B are orthogonal if (Aij , Bij) ̸= (Axy, Bxy)
whenever i ̸= x or j ̸= y. Note that the number of ordered pairs of {1, . . . , n} is n2 and there are only n2

cells, so if all the pairs are different, each pair appears exactly once.

Theorem L. Let M be a set of pairwise orthogonal Latin squares of order n. Then |M | ≤ n− 1.

Proof. Let A,B be orthogonal Latin squares of order n and let π be some permutation of {1, . . . , n}. Consider
A′ where A′

ij = π(Aij). Note that (A′
ij , Bij) = (A′

xy, Bxy) if and only if (A′
ij , Bij) = (A′

xy, Bxy). So A′ and
B are also orthogonal.

So let M = {A1, . . . , At} and for each Ai ∈ M , permute the n elements such that the first row of the
resulting Latin square A′

i is (1, 2, 3, . . . , n). By our earlier observation, A′
1, . . . , A

′
k are pairwise orthogonal.

15

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

Now we zoom in on the second row, first column if A′
i for some i. Call this cell k. First we notice that k ̸= 1,

since the first element of the first row is 1. Then since comparing any two A′
i pairwise, we get all the pairs

(1, 1), (2, 2), . . . , (n, n) in the first row, each of 2, 3, . . . , n can appear in the second row, first column of at
most one A′

i. So t = |M | ≤ n− 1.

The following theorem relates orthogonal Latin squares to finite projective planes.

Theorem O. For n ≥ 2, a finite projective plane of order n exists if and only if there exists a set of n− 1
pairwise orthogonal Latin squares of order n.

7. RAMSEY THEORY

Ramsey theory deals with the general question: “How big must a mathematical structure have to be such
that some property holds?”

7.1. Independent sets and cliques

In a graph G = (V,E), an independent set is a set I ⊆ V such that uv /∈ E for all u, v ∈ I. A clique is a set
K ⊆ V such that uv ∈ E for all u, v ∈ K,u ̸= v. The independent set number α(G) is the maximum size of
any independent set and the clique number ω(G) is the maximum size of any clique in G.

Theorem R. Let G = (V,E) be a graph. If |V | ≥
(
k+l−2
k−1

)
=
(
k+l−2
l−1

)
, then α(G) ≥ l or ω(G) ≥ k.

Proof. By induction on k + l. In the base case k = 1 or l = 1, all the theorem says is that there is an
independent set or clique of size 1. For the inductive step, let k, l ≥ 2 and assume that the claim holds for
k, l − 1 or k − 1, l. By Pascal’s formula,(

k + l − 2

k − 1

)
=

(
k + l − 3

k − 1

)
+

(
k + l − 3

k − 2

)
.

Call the left-hand side n and from the right-hand side, call the first summand n1 and the second summand
n2. Now pick any vertex u ∈ V . Let B = N(u) and A = V \ (B ∪ {u}). First note that it is impossible that
both |A| < n1 and |B| < n2 since that would imply that

n = 1 + |A|+ |B| ≤ 1 + (n1 − 1) + (n2 − 1) = n− 1,

a contradiction. So either |A| ≥ n1 or |B| ≥ n2.

If |A| ≥ n1, by the induction hypothesis ω(G[A]) ≥ k or α(G[A]) ≥ l − 1. Then a clique in G[A] is also
a clique in G, for the first case; and for the second case, adding the vertex u to an independent set in G[A]
gives an independent set in G, so α(G) ≥ l.

If it happens instead that |B| ≥ n2, then by induction we have either ω(G[B]) ≥ k − 1 or α(G) ≥ l. In
the first of these cases, an independent set in G[B] is also an independent set in G, so α(G) ≥ l; and in the
second case, adding u to a clique in G[B] gives a clique in G, so ω(G) ≥ K.

For each k, l ∈ N, the Ramsey number r(k, l) is the minimum n such that for any graph G with n
vertices, ω(G) ≥ k or α(G) ≥ l.

Corollary.

r(k, l) ≤
(
k + l − 1

k − 1

)
=

(
k + l − 2

l − 1

)
.

Very little is known about Ramsey numbers. By observation, we have that r(k, 1) = r(1, l) = 1;
r(2, l) = l and r(k, 2) = k. For k = l, we only know that r(3, 3) = 6 and r(4, 4) = 18. The exact values
of r(n, n) for n ≥ 5 are unknown. The above corollary gave an upper bound and the next theorem gives a
lower bound.

16

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

Theorem L. For k ≥ 3, r(k, k) > 2k/2.

Proof. First we introduce some basic notions from probability that we will need. Let Ω be a probability
space and let X be an event. Then Pr[X] = |X|/|Ω| < 1 if and only if |X| < |Ω|, which would imply that
¬X ̸= ∅.

Now we create a random graph G by starting with a set of n vertices and adding each edge with
probablity 1/2 uniformly at random. We’re trying to prove that if n ≤ 2k/2 there is a G with |V | = n such
that α(G) < k and ω(G) < k, so it suffices to show that

Pr[α(G) ≥ k or ω(G) ≥ k : n ≤ kk/2] < 1.

Let A be a subset of vertices with |A| = k. Let KA denote the proposition “A forms a clique” and let IA

denote the proposition “A forms an independent set”. Then let XA = KA ∪ IA. Pr[KA] = (1/2)(
k
2) = Pr[IA]

and since KA ∩ IA = ∅,

XA = 2 ·
(
1

2

)(k2)
= 21−(

k
2).

Let Pr(Y) denote the probability that α(G) ≥ k or ω(G) ≥ k. This is equal to the probablilty that XA holds
for some A ⊆ V with |A| ≥ k. So

Pr[Y] ≤
∑
A⊆V
|A|≥k

21−(
k
2) =

(
n

2

)
21−(

k
2) ≤ nk

k!
21−(

k
2),

and we can further derive the strict inequality

nk

k!
21−(

k
2) <

nk

2k/2+1
21−(k2/2−k/2) =

(n

2k/2

)k
,

which is less than 1, since n ≤ 2k/2.

7.2. Increasing/decreasing subsequences

Given a finite sequence S = (x1, x2, . . . , xn) of numbers, an increasing (decreasing) subsequence of length k
is a sequence (xi1 , xi2 , . . . , xin) such that for all j, l with 1 ≤ j < l ≤ k, ij < il and xij ≤ xil (xij ≥ xil).

Theorem E (Erdős-Szekeres). For any finite sequence S of at least (r− 1)(s− 1)+ 1 numbers, there is an
increasing subsequence of length r or a decreasing subsequence of length s.

Proof. Suppose, towards a contradiction, that every increasing/decreasing subsequence has length at most
r − 1/s − 1 respectively. Then we label each xi of S with a pair (ai, bi) where ai/bi is the length of the
longest increasing/decreasing subsequence ending in xi.

We claim that each of the numbers xi, xj have different labels. Let i ̸= j and without loss of generality,
assume i < j. If xi ≤ xj , then ai < aj , as any increasing subsequence ending in xi can be extended by xj .
Likewise, if xi ≥ xj , then bj > bi, as any decreasing subsequence ending in xi can be extended by xj .

By our assumption, ai ≤ r − 1 and bi ≤ s− 1 for all i. So the number of labels (ai, bi) ≤ (r − 1)(s− 1)
which implies that the length of the sequence S is at most (r − 1)(s− 1), a contradiction.

The given bound is tight; there are sequences with length (r − 1)(s− 1) numbers that neither have an
increasing subsequence of length r, nor have a decreasing subsequence of length s. To construct one, take
a grid of (r − 1)(s − 1) points in the plane and rotate it very slightly counterclockwise such that no two
points are on the same horizontal or vertical line. Then we have a set of points (xi, yi), . . . (xn, yn) where
n = (r−1)(s−1). Now order the y-coordinates by the value of the x-coordinates. Any increasing subsequence
can take at most one element from each column, so at most r− 1, and any decreasing subsequence can take
at most one element from each row, so at most s− 1.

17

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

8. ERROR-CORRECTING CODES

Suppose we have two people who need to communicate over a channel that is “noisy” in the sense that errors
may be introduced into the message. To detect and solve this issue, checksums may be used. Suppose we
have an alphabet Σ = {0, . . . , q − 1} where q is prime. Let x denote a message x ∈ Σk for some positive

integer k. The checksum c of x is
∑k

i=1 xi (mod q) and we can encode the message as y ∈ Fk+1
q where

yi =
{
xi for i ≤ k
c for i = k + 1

Since q is prime, for any x, y ∈ Fk
qk, if x and y differ at exactly one place, then their checksums will differ.

But what happens if more errors occur? Also, is it possible for the receiver to determine where the error
occured without asking the sender to resend the message?

To formalise the problem further, we introduce some more definitions. The block length n is the length
of the encoded message. Suppose the original (non-encoded) message has length k. Then the encoding
function E : Σk → Σn is applied by the sender before transmission and the decoding function D : Σn → Σk

is applied by the receiver upon the message’s arrival. The code C ⊆ Σn is the image of E. A code is binary
if Σ = {0, 1}. Checksums work by increasing the distance between two messages x, y ∈ Σk if x ̸= y.

The Hamming distance between two messages x, y ∈ Σm is given by

∆(x, y) =

m∑
i=1

[xi ̸= yi].

For a code C ⊆ Σn, the minimum distance of C is

∆(C) = min
x,y∈C

{∆(x, y)}.

An (n, k, d)q-code is a code C such that

i) C ⊆ Σn;

ii) k = logq |C|;
iii) and d = ∆(C).

Note that |C| is the size of the code and k need not be an integer. A checksum is a (n, n− 1, 2)q-code:
Suppose that x ∈ C. Let y be such that ∆(x, y) = 1. Is it possible that y ∈ C? No, because for all x, y ∈ C,
if x ̸= y then ∆(x, y) ≥ 2.

If, for a code C, we can be sure that at most r errors occur during transmission, then:

i) If ∆(C) ≥ r + 1, then the error can be detected because for any x ∈ C, if we have y that differs from x
at not less than r + 1 places, i.e. ∆(x, y) ≤ r, then y /∈ C.

ii) If r ≤ ⌊(∆(C) − 1)/2⌋, then the error can be corrected. Construct a graph with V = Σn with an edge
between x, y ∈ Σn if ∆(x, y) = 1. Now if we have y ∈ Σn which we know is a garbled message, we can
find the closest valid message in the graph. If the error is not too large, then the closest valid message
will have been the intended one.

The general aim is to construct codes with small n and large ∆(C). For any finite projective plane
(X,L) of order m, we can construct a (m2+m+1, log2(m

2+m+1), 2m)2-code by associating every letter in
the alphabet with a characteristic vector of L ∈ L. For example, the letter associated with the line {1, 5, 6}
in the Fano plane will be coded as 1000110. Since for any L1, L2 ∈ L, L1 ̸= L2, |L1 ∩ L2| = 1 and each of
L1, L2 have m+ 1 points, ∆(yL1

, yL2
) = 2m, where yLi

is the letter associated with the line Li.

A linear code C ⊆ Fn
q is a linear subspace of Fq, i.e. for all x, y ∈ C, α ∈ Fq, αx+ y ∈ C. There exist

k independent vectors x1, . . . , xk ∈ Fn
q such that

C =

{ k∑
i=1

αixi : αi, . . . αn ∈ Fq

}
.

18

NDMI011 COMBINATORICS AND GRAPH THEORY MARCEL GOH

More succinctly, we can express C using the generator matrix G = [x1 · · · xk] ∈ Fn×k
q . Multiplying any

message by G on the left encodes it and C = {Gα : α ∈ Fk
q}.

Alternatively, we may represent C as the null space of a matrix. Recall that for any k-dimensional linear
subspace C, there is an (n − k)-dimensional linear subspace C⊥ such that for all x ∈ C, y ∈ C⊥, xT y = 0.

Using the generator matrix H ∈ F
n×(n−k)
k of C⊥, express C = {x : xTH = 0}. Then H is called the parity

check matrix of C. In a sense, linear codes are simple because we can detect errors simply by computing
xTH.

The support of a vector x is the set {i : xi ̸= 0} and the Hamming weight of x is wtx = |{i : xi ̸= 0}|.

Theorem L. For a linear code C,

∆(C) = min{wtx : x ∈ C and x ̸= 0}.

Proof. For ease of notation, let d denote min{wtx : x ∈ C and x ̸= 0}. First we show that d ≤ ∆(C). Let
y, z ∈ C be such that ∆(y, z) = ∆(C). Since C is linear, x = y − z ∈ C. Note that ∆(y, z) = |{i : xi ̸= 0}|,
so d ≤ wtx = ∆(C).

Now we show that d ≥ ∆(C). Note that 0 ∈ C. Let x ̸= 0 be such that wtx = d. Then ∆(C) ≤
∆(0, x) = |{i : xi ̸= 0}| = wtx = d.

We can use this theorem to construct a linear code with ∆(C) ≥ 3. We find a parity check matrix
H such that xTH ̸= 0 for any non-zero x with wtx ∈ {1, 2}. For simplicity, we will work with q = 2. If
wtx = 1, then X has exactly one 1-entry, say it is at position i. So xTH is the i-th row Hi of H. We need
that Hi is non-zero for every i. If wtx = 2, then xT has exactly two non-zero elements, say they are at
positions i and j. Then xTH = (Hi +Hj)

T hence we need Hi ̸= Hj for all i ̸= j.
If all rows of H are distinct and non-zero, then we get ∆(C) ≥ 3. The largest number of such rows if

H ∈ Fn×l
2 is 2l − 1 so n = 2l − 1 for any l = n− k. Hence we obtain an (n, n− log2(n+ 1), 3)2-code called

the Hamming code.
Let x ∈ Fn

q . The ball around x of radius r is given by

B(x, r) = {y ∈ Fn
q : ∆(x, y) ≤ r}.

The volume of such a ball is

vol(r, n) = |B(x, r)| =
r∑

i=0

(
n

i

)
(q − 1)i.

Theorem H (Hamming bound). If an (n, k, d)q-code exists, then

qk · vol
(⌊

d− 1

2

⌋
, n

)
≤ qn.

Proof. Let r = ⌊(d− 1)/2⌋ and consider
∪

x∈C B(x, r) ⊂ {1, . . . , q}n. By observation,∣∣∣∣∣ ∪
x∈C

B(x, r)

∣∣∣∣∣ = ∑
x∈C

vol (r, n) = qk · vol (r, n) ≤ qn.

Note that if d = 3 and q = 2 then the Hamming bound is 2k(n+1) ≤ 2n and the Hamming code matches
this bound with equality as k = n− log2(n+1). An (n, k, d)2-code is called perfect if qk ·vol (⌊(d−1)/2⌋, n) =
qn. There are no codes with larger size k than a (n, n−d+1, d)2-code (even if we let q > 2), as the following
theorem shows.

Theorem S (Singleton bound). If C is an (n, k, d)q-code, then k ≤ n− d+ 1.

Proof. Define a function f : Σn → Σk−1 such that f(x1, . . . , xn) = (x1, . . . , xk−1). As |Σk−1| = qk−1 and
|C| = qk > qk−1, there are x, y ∈ C, with x ̸= y and f(x) = f(y). So x and y can only differ in the last
n− k + 1 entries. Since d = ∆(C) ≤ ∆(x, y) ≤ n− k + 1, we get k ≤ n− d+ 1.

An (n, k, d)q code is called maximum-distance separable or MDS if k = n− d+ 1.

19

