
NOPT048 Linear Programming and Combinatorial Optimization∗

Notes by

Marcel K. Goh (Prague, Czech Rep.)

9 June 2019

1. DEFINITIONS AND THEOREMS

1.1. Linear and integer programs

The following is a linear program:
maximise cTx
subject to Ax ≤ b.

Here x, b, c ∈ Rn and A is an m×n matrix over R. The function cTx is called the objective function and
it is what the linear program is trying to maximise (or minimise). Any vector x that satisfies the inequality
Ax ≤ b is called a feasible solution. A vector x∗ is called an optimum solution if cTx∗ ≥ cTx for all feasible
solutions x. A linear program is called infeasible if there are no feasible solutions. Even if a linear program is
feasible, it might be unbounded. This happens when its objective function can be made arbitrarily “good”.

In a certain sense, linear programs are easy to solve. Adding an integrality constraint to a linear program
gives an integer program:

maximise cTx
subject to Ax ≤ b,

x ∈ Zn.

Integer programs are much harder to solve in the general case. Suppose we want to solve the following
integer program:

maximise cTx
subject to Ax ≤ b,

x ∈ {0, 1}.

It is often a good strategy to solve the linear program relaxation of the integer program, which gives an
approxmiate answer:

maximise cTx
subject to Ax ≤ b,

0 ≤ x ≤ 1.

Then we can take the solution of the linear program and round each element to the nearest integer value
to get a solution of the original integer program. In some cases, the linear program relaxation gives quite a
good answer. For example, if G is a graph with minimum vertex cover of size n, then formulating an integer
program and solving its linear program relaxation will spit out a vertex cover S with |S| ≤ 2n.

1.2. Geometric interpretation

The inequality Ax ≤ b defines a polyhedron. More precisely, we say that a polyhedron is the intersection
of finitely many halfspaces, where a halfspace is the set {x : aTx ≤ b} for some a ∈ Rn and b ∈ R. If a
polyhedron is bounded, we call it a polytope. A polyhedron is closed and convex. The finite intersection of
closed sets is closed and the intersection of convex sets is convex.

Let S ⊂ Rn be a a set of m points. Then the convex hull of S is the set

convS = {x : x =

m∑
i=1

λisi,

m∑
i=1

λi = 1, λi ≥ 0}.

∗ Course given by Prof. Hans Raj Tiwary at Charles University in Prague

1

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

The conic hull of S is the set

coneS = {x : x =

m∑
i=1

λisi, λi ≥ 0}.

The affine hull of S is the set

affS = {x : x =

m∑
i=1

λisi,

m∑
i=1

λi = 1}.

The convex hull can be obtained from the conic hull by intersecting it with a hyperplane. The affine hull is
the smallest-dimensional subspace that contains all the points in S.

Let P = {x : Ax ≤ b} be a polyhedron. An inequality αTx ≤ β is said to be a valid inequality if and
only if for all y ∈ P , αT y ≤ β. Then a subset F ⊂ P is a face of P if and only if there exists a valid inequality
αTx ≤ β such that F = P ∩{x : αTx ≤ β}. The trivial faces of any polyhedron P are ∅ and P itself (formed
by intersecting P with the valid inequalities 0Tx ≤ 1 and 0Tx ≤ 0 respectively). Any face that is not trivial
is called proper.

The dimension of a polyhedron P , denoted dimP , is the largest dimension of a ball inside P . A vertex
is a face of dimension 0, an edge is a face of dimension 1, and a facet is a face of dimension dimP − 1. A
point x ∈ P is called an extreme point if it is not a convex combination of points of P . Note that a point x
is an extreme point if and only if it is a vertex.

Theorem M (Minkowski-Weyl). A set of points P is a polyhedron if and only if there exist finite sets V
and Y such that P = convV + coneY where the sum A+B denotes the set {a+ b : a ∈ A, b ∈ B}.

1.3. Simplex method

A polyhedron is pointed if it does not contain a line.

Lemma P. Every non-empty pointed polyhedron P has at least one vertex.

Theorem E. Consider the linear program

maximise cTx
subject to Ax ≤ b.

If the polyhedron P defined by Ax ≤ b is pointed and if an optimum exists, then there exists a vertex of P
that attains the maximum.

The result of the above statements is an algorithm for solving linear programs, called the simplex method.
Here is the general idea:

Algorithm X (Simplex method). Find an optimum solution of a linear program.

X1. Find an initial vertex. It is a 0-dimensional face with some 1-dimensional faces incident on it.

X2. At any vertex, check for optimality. If optimal, we are done.

X3. If the vertex is not optimal, increase the value of the objective function by following an edge to a new
vertex. Return to step X2.

Let A be an m × n matrix, b ∈ Rm, x ∈ Rn, with n ≥ m. Let B ⊂ [n] = {1, . . . , n} of cardinality m.
Then AB denotes the square matrix formed by selecting the columns of A indexed by the elements of B and
likewise xB denotes the vector of length m formed by selecting the elements indexed by the elements of B.
We define a vector x to be a basic feasible solution of the linear program

maximise cTx
subject to Ax ≤ b

if and only if there exists B ⊂ [n] with |B| = m such that:

i) AB is non-singular;

ii) xj = 0 for all j /∈ B;

2

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

iii) xB = A−1
B b.

A set B ⊂ [n] is called a basis if and only if AB is non-singular, and B is a feasible basis if the unique
solution of ABxB = b is non-negative. Note that a basic feasible solution is uniquely determined by the
feasible basis B, but a vertex does not have to be determined by a unique basis.

A matrix A is totally unimodular if and only if every square submatrix of A has determinant 0, 1, or
−1.

1.4. Duality

As always, we start with the linear program

maximise cTx
subject to Ax ≤ b,

x ≥ 0.

Inequalities of a linear program can be added together without changing the feasible region. Likewise, one
can also multiply any inequality by a non-negative scalar. So we can manipulate inequalities to get an upper
bound on the optimum value of the objective function. We want to pick coefficients to get the least upper
bound possible. Let y denote a vector of coefficients. We want to

minimise bT y
subject to AT y ≥ c,

y ≥ 0.

The original linear program is called the primal and this new one is called the dual. Any feasible solution
of the dual linear program gives an upper bound on the primal and the optimum of the dual is equal to the
optimum of the original program.

Theorem W (Weak Duality Theorem). Let P and D be primal and dual linear programs of the above
form and let x and y be respective feasible solutions. Then cTx ≤ bT y.

Theorem S (Strong Duality Theorem). Let P and D be primal and dual linear programs. Then exactly
one of the following holds:

i) P infeasible, D infeasible

ii) P infeasible, D unbounded

iii) P unbounded, D infeasible

iv) P and D both feasible and bounded and furthermore, if x∗ and y∗ are primal and dual optimal solutions,
then cTx∗ = bT y∗.

Lemma F (Farkas lemma). For an arbitrary matrix A and vector b, exactly one of the following holds:

i) There exists a vector x such that Ax = b and x ≥ 0.

ii) There exists a vector y such that AT y ≥ 0 and bT y < 0.

Lemma G (Farkas lemma 2.0). For an arbitrary matrix A and vector b, exactly one of the following holds:

i) There exists a vector x such that Ax ≤ b and x ≥ 0.

ii) There exists a vector y such that AT y ≥ 0, y ≥ 0 and bT y < 0.

1.5. Applications

1.5.1. Matching and vertex cover in bipartite graphs

Given a graph G = (V,E), a matching is a set M ⊂ E such that for all v ∈ V there is at most one edge
e ∈M with v ∈ e. The linear program that finds the maximal matching in a bipartite graph is

maximise
∑
e∈E

xe

subject to
∑
v∈e

xe ≤ 1 for all v ∈ V,

xe ≥ 0 for all e ∈ E.

3

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

The dual of this linear program is the following:

minimise
∑
v∈V

yv

subject to yu + yv ≥ 1 for all {u, v} ∈ E,
yv ≥ 0 for all v ∈ V.

Given a graph G = (V,E), a vertex cover is a set S ⊂ V such that for all {u, v} ∈ E, {u, v} ∩ S ≥ 1. The
dual linear program above finds the minimum vertex cover in a bipartite graph. The duality of these two
programs results in Kőnig’s theorem.

Theorem K (Kőnig’s theorem). Suppose G = (V,E) is a bipartite graph. LetM ⊂ E denote the maximum
matching and let S ⊂ V denote the minimum vertex cover. Then |M | = |S|.

1.5.2. Matching in weighted graphs

Let G = (V,E) be a graph (not necessarily bipartite) with a weight function w : E → R+. Suppose we want
to find the maximum weight matching in G. For any subset E′ ⊂ E, the characteristic vector of E′ is the
vector χE′

given by

χE′

e =
{
1 if e ∈ E′

0 if e /∈ E′

for all e ∈ E. Then the matching polytope of the graph G is the set

M(G) = conv {x ∈ {0, 1}|E| : x is the characteristic vector of some matching in G}.

To get the maximum weight matching, we need only solve the linear program

maximise wTx
subject to x ∈M(G).

What does the polytope M(G) look like in terms of inequalities? It turns out that M(G) is the set of all
vectors x that satisfy

1.
∑
v∈e

xe ≤ 1 for all v ∈ V and

2.
∑

e∈E[U]

xe ≤
|U | − 1

2
for every set U ⊂ V of odd cardinality.

In a graph G = (V,E), a matching M ⊂ E is perfect if every vertex in V is incident to some edge in M .
The perfect matching polytope is the set

PM(G) = conv {x ∈ {0, 1}|E| : x is the characteristic vector of some perfect matching in G}.

For a set U ⊂ V of vertices, let δ(U) denote the number of edges that have one endpoint in U and one
endpoint outside U . Then we find that PM(G) is the set of all vectors x satisfying

1.
∑
v∈e

xe = 1 for all v ∈ V ,

2.
∑

e∈δ(U)

xe ≥ 1 for every set U ⊂ V of odd cardinality, and

3. xe ≥ 0 for every e ∈ E.

Note that the number of inequalities in these polytopes may be very large. For this reason, a polynomial-
time algorithm may not exist.

4

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

1.5.3. The travelling salesman problem

Given a graph G = (V,E), a closed tour is a walk in G with no repeated edges and no repeated vertices
except for the first and last vertex, which are the same. In a graph with edge costs (ce : e ∈ E), travelling
salesman problem asks us to find the minimum-weight closed tour that contains each vertex exactly once.
To solve the travelling salesman problem, we start with the following linear program:

minimise
∑
e∈E

cexe

subject to
∑
v∈e

= 2 for all v ∈ V,

0 ≤ xe ≤ 1 for all e ∈ E.

What we really want to do is add the inequalities
∑

e∈δ(S) xe ≥ 2 for every ∅ ̸= S ̸= V . This is called subtour
elimination because it forbids any tours smaller than the entire closed tour we’re trying to build. Adding this
inequality, we get the linear program relaxation of the integer program for the travelling salesman problem.
The problem is that eliminating subtours adds an exponential number of ineqalities to the program. Instead
of adding all of these inequalities, we approach the problem as follows:

Algorithm T (Subtour elimination). This algorithm solves the travelling salesman problem by adding
violated subtour constraints one at a time.

T1. We start with the linear program without the subtour constraints.

T2. Find the optimal solution to the linear program.

T3. If we find that some subtour constraints are violated by the optimal solution, we add these inequalities
to our program and return to step T2. If no subtour constraints are violated, we have a solution.

Step 3 is our main concern. How do we figure out if there are any violated subtour constraints? Suppose
we are at a certain step of the algorithm and the linear program has just given us an optimal solution x∗.
Let G(x∗) denote the graph with vertices V and edges {e : x∗

e > 0}. Without loss of generality, assume
G(x∗). Set capacities ue = x∗

e for every edge e. Now for any S ⊂ V , the weight of the cut (S, V \ S) equals
the value of

∑
e∈δ(S) xe. So we can solve the min-cut problem over G(x∗) and if we get a value less than

2, we know that some subtour constraint is violated. Of course, we need some heuristics to decide which
constraints to add, so there is still no guarantee of polynomial-time termination.

1.6. Ellipsoid algorithm

So far, we do not know if linear programs can be solved in polynomial time. It turns out that optimisation
is polynomially equivalent to separating over a polytope. Given x ∈ Rn and a polyhedron P , we separate
as follows: Output “yes” if x ∈ P ; otherwise, output “no” and a pair (α, β) such that αT y ≤ β is a valid
inequality for P and αTx > β. The ellipsoid algorithm uses an oracle for separation to answer the question
of feasibility: Given a polytope P , find an x ∈ P or conclude that P = ∅.

Before we get into the actual method, let’s convince ourselves that checking for feasibility is equivalent
to optimising. That optimisation implies feasibility is obvious. So let’s suppose we have a method to check
if a linear program is feasible. Can we use that to optimise the linear program

minimise cTx
subject to Ax ≤ b,

x ≥ 0?

Well, from duality we know that if an optimum exists, it will also be the optimum value of the dual linear
program. So we can construct a polyhedron that contains only this value and then check if it is feasible. So
we check if the polyhedron

{
(
x
y

)
: cTx = bT y,Ax ≤ b, AT y ≥ c, x ≥ 0, y ≥ 0}

is feasible and that will give us the optimum value of x, if it exists.

5

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

On to ellipsoids. An ellipsoid E(A, a) is the set {x ∈ Rn : (x−a)TA−1(x−a) ≤ 1} where A is a positive
definite matrix. This means that (x− a)TA−1(x− a) is positive and moreover, A = M ·M for some square
matrix M . If we let B denote the unit ball in Rn, then E(A, a) = {Mx+ a : x ∈ B}.

For simplicity, assume that P is bounded and assume that P is either empty or full-dimensional. Assume
also that we have an oracle that outputs a separating hyperplane. Then the ellipsoid algorithm determines
if P = {x : Ax ≤ b} is feasible.
Algorithm E (Ellipsoid algorithm). This algorithm presupposes that we have a separation oracle. Given
a bounded polytope P and assuming, for the sake of simplicity, that P is either empty or full-dimensional,
the algorithm determines either outputs a point c in P or concludes that P is empty.

E1. Start with an ellipsoid large enough that it definitely contains a point in the polytope, if one exists.

E2. Let c be the centre of the ellipsoid. Invoke the separation oracle. If c ∈ P , output c and halt.

E3. If we have reached the maximum amount of iterations, output P = ∅.
E4. Otherwise, the oracle gives us a separating hyperplane that cuts the ellipsoid. Determine which half of

the ellipsoid P lies, then draw a new, smaller ellipsoid that contains this half. Return to step E2.

The maximum number of iterations is calculated using a function polynomial in the size of the linear
program, so this algorithm runs in polynomial time.

1.7. Matroids and greedy algorithms

Given a graph G = (V,E), a spanning tree is a set T ⊂ E such that every vertex is incident to some edge in
T and G = (V, T) is a contains no cycles. Kruskal’s algorithm obtains the minimum weight spanning tree by
maintaining a forest F . If F spans every vertex, then it is a spanning tree. If not, add the minimum weight
edge e such that F ∪ {e} does not contain a cycle and repeat.

Let G = (V,E) be a graph and let F denote the set of all forests in G. Then (E,F) is called the graphic
matroid of G. In fact, there are lots of different types of matroids. A tuple M = (E, I) where I ⊂ P(E) is a
matroid if

i) ∅ ∈ I,

ii) If X ⊂ Y and Y ∈ I, then X ∈ I,

iii) If there exist X,Y ∈ I such that |Y | > |X|, then there exists some y ∈ Y \X such that X ∪ {y} ∈ I.

A system that satisfies i) and ii) is called an independence system. Associated with any independence
system M = (E, I) is its rank function r : P(E)→ R defined by

r(X) = max{|Y | : Y ⊂ X,Y ∈ I}.

We call r(E) the rank of M . A set S ∈ I such that |S| = r(E) is called a base of M . If M = (E, I) is a
matroid, then the properties of its rank function r are:

1. 0 ≤ r(X) ≤ |X| for all x ⊂ E.

2. If X ⊂ Y then r(X) ≤ r(Y) for all X,Y ⊂ E.

3. r(X ∪ Y) + r(X ∩ Y) ≤ r(X) + r(Y) for all X,Y ⊂ E.

Property 3 above is called submodularity. If r is the rank function of a general independence system, it
need only satisfy properties 1 and 2, as well as the weaker property r(X ∪ Y) ≤ r(X) + r(Y).

Matroids can be directly characterised by the rank function.

Theorem R (Rank characterisation of matroids). Let E be a finite set and suppose that r : P(E) → R
satisfies the three peoperties of the rank function. Then M = (E, I), with

I = {Y ⊂ E : |Y | = r(Y)},

is a matroid with r as its rank function.

To further understand the link between spanning trees and matroids, note that Kruskal’s algorithm is
an instance of the weighted greedy algorithm. Let M = (E, I) be a matroid with a weight function c defined
on edges. The algorithm proceeds as follows:

6

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

Algorithm G (Greedy algorithm). Given a matroid M = (E, I) with a weight function c defined on edges,
this algorithm finds the set S ∈ I with maximum weight.

G1. Set S0 ← ∅, and E is the element set of M . Set i← 0.

G2. Select e ∈ E with maximum c(e). Set E ← E \ {e}.
G3. If Si ∪ {e} ∈ I, set Si+1 ← Si ∪ {e}, i← i+ 1.

G4. If E = ∅, output S = Si. Otherwise, return to step 2.

The following two theorems establishes a certain equivalence between matroids and problems that can
be solved with the greedy algorithm.

Theorem G. Let M = (E, I) be a matroid with rank function r. The weighted greedy algorithm finds the
maximum weighted independent set Sk of cardinality k for each 1 ≤ k ≤ r(E).

Theorem E (Greedy equivalence). Let M = (E, I) be an independence system. Then if the weighted
greedy algorithm works for all (non-negative) weights, then M is a matroid.

It is worth it to note that spanning trees and matroids have corresponding polytopes. For a graph
G = (V,E), the spanning tree polytope ST (G) is the set of all vectors x ∈ R|E| that satisfy

1. xe ≥ 0,

2.
∑
e∈E

xe = |V | − 1, and

3.
∑

e∈E[S]

xe ≤ |S| − 1, for every proper subset S of V with |S| ≥ 2.

For a matroid M = (E, I) with rank function r, the matroid polytope PM is the set of all vectors
x ∈ R|E| satisfying

∑
e∈T xe ≤ r(T) for all T ⊂ E, where xe ≥ 0.

2. PROBLEMS AND PROOFS

Problem 1. Describe how to find an initial basic feasible solution for an arbitrary LP in standard (equa-
tional) form.

Solution. Suppose the constraints are Ax = b, x ≥ 0. Examine the matrix A. We want to create an identity
submatrix. If one already exists, we use that as an initial basis. If not, for any row that doesn’t have a
unique variable with coefficient 1, introduce a new variable. So we introduce new variables y1, . . . , yk. Then
all these new variables form an initial basis of an auxiliary linear program. We minimise the sum over all yi.
Optimising over this minimisation linear program gives us a basis for our original linear program.

Problem 2. Write an integer program formulation for the matching/perfect matching problem.

Solution. The integer program corresponding to the matching problem in a graph G = (V,E) with a cost
vector c corresponding to edges.

maximise
∑
e∈E

cexe

subject to
∑
v∈e

xe ≤ 1 for all v ∈ V,

xe ∈ {0, 1}.

For a perfect matching, change the inequality for each vertex to equality.

Problem 3. Prove that the linear program relaxation of the standard integer program for matching/perfect
matching is integral for bipartite graphs.

Proof. Let LP (G, c) denote the linear program relaxation of the perfect matching integer program over a
graph G = (V,E) with weights c. If LP (G, c) is infeasible, then G has no perfect matching. For a vector x,
let I(x) denote the set {i : xi ∈ {0, 1}}. If LP (G, c) is feasible, there exists at least one optimal solution. Let

7

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

x∗ an optimal solution that maximises the number of integer elements, i.e. |I(x∗)| ≥ |I(x)| for all optimal
solutions x. We want to show that |I(x∗)| = |E|.

Suppose, towards a contradiction, that |I(x∗)| < |E|. Then there exists an i such that 0 < xi < 1. It
must correspond to some edge e1 = {a1, b1} in the graph G. Since the sum at each vertex is 1, there must be
another edge e2 leaving b1 with x∗

e2 non-integral. Continue adding edges in this way. Because the graph has
finitely many edges, we must eventually hit a vertex we’ve seen before and we have a cycle C ⊂ E in which
0 < x∗

e < 1 for all edges. Since the graph G is bipartite, the length t of the cycle C is even. To simplify
notation let’s rename the edges of C to e1, e2, . . . , et. Now for a small real number ϵ define a vector x′ by

x′
e =

x∗
e − ϵ for e ∈ {e1, e3, . . . , et−1}

x∗
e + ϵ for e ∈ {e2, e4, . . . , et}

x∗
e otherwise

It’s easy to see that this new x′ still maintains the sum of 1 at each vertex. Now we just have to determine
how to pick ϵ ∈ [0, 1]. Let ϵ be the smallest number that causes one of the x∗

e to hit 0 or 1. Then x′ has one
more element that is integral compared to x∗, contradicting maximality of I(x∗)|. So I(x∗)| = |E|.

Problem 4. The following is the integer program for vertex cover in a graph G = (V,E):

minimise
∑
v∈V

xv

subject to xu + xv ≥ 1 for all {u, v} ∈ E,
xv ∈ {0, 1} for all v ∈ V.

Prove that changing xv ∈ {0, 1} to 0 ≤ xv ≤ 1 and then solving the resulting linear program results in a
2-approximation.

Proof. Suppose that x is the optimum feasible solution of the linear program relaxation. Define S = {v ∈
V : x∗

v ≥ 1
2}. S is a vertex cover. We want to show that |S| ≤ 2 · |S∗|. Let S∗ be the actual optimal vertex

cover and x∗ its characteristic vector. Then

|S| =
∑
v∈S

1 ≤ 2 ·
∑
v∈V

xv ≤ 2 ·
∑
v∈V

x∗
v = 2 · |S∗|,

which is what we wanted.

Problem 5. Prove the max-flow min-cut theorem via duality.

Proof. Given a directed graph G = (V,E) with capacities c for each edge, source vertex s and sink vertex t.
Let P be the set of all paths from s to t. Then we can formulate the maximum flow problem as the following
linear program:

maximise
∑
p∈P

xp

subject to
∑
e∈p

xp ≤ c(e) for all e ∈ E,

xp ≥ 0 for all p ∈ P.

Now we construct the dual. We have one dual variable ye for every edge e ∈ E.

minimise
∑
e∈E

c(e)ye

subject to
∑
e∈p

ye ≥ 1 for all p ∈ P,

ye ≥ 0 for all e ∈ E.

This is the linear program relaxation of the minimum cut integer program. By the Strong Duality Theorem,
the optimal value of the objective functions of these two linear programs must be equal, so the maximum
flow equals the value of the minimum cut.

8

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

Problem 6. Prove Kőnig’s theorem via duality.

Proof. Let G = (V,E) be a bipartite graph with m edges and n vertices. Consider the integer program

maximise

m∑
j=1

xj

subject to Ax ≤ 1,
x ≥ 0,
x ∈ Zm.

where A is the incidence matrix of G. Because each row can sum to at most 1 and the incidence matrix of
a graph contains only 0s and 1s, we discover that xj ∈ {0, 1} for all j and that the edges ej with x∗

j = 1 in
an optimal solution x∗ form a maximum matching in G.

Now consider the integer program

maximise

n∑
i=1

yi

subject to AT y ≥ 1,
y ≥ 0,
y ∈ Zn.

where again, A is the incidence matrix of G. In this integer program, every row of AT corresponding to edge
ej must be at least 1. So in any optimal solution y∗ we have y∗i ∈ {0, 1}, since any larger value could be
decreased to 1. Then the vertices vi with y∗i = 1 form a minimum vertex cover of G.

In both integer programs we may drop the integrality constraints, without affecting the optima, because
A is unimodular and by Problem 8, b being integral implies that any optimum vector is as well. The resulting
linear programs are dual to one another, so their optimal values are equal. Hence the size of a maximum
matching equals the size of a minimum vertex cover in G.

Problem 7. Let G = (V,E) be a graph and with n vertices v1, . . . , vn andm edges e1, . . . , em. The incidence
matrix of G is an n×m matrix A such that Aij = 1 if vi ∈ ej and 0 otherwise, for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Prove that if G is bipartite, its incidence matrix is totally unimodular.

Proof. Let G = (X ∪ Y,E) be a bipartite graph (X ∩ Y = ∅) and let A denote its incidence matrix. We
want to show that every k × k submatrix Q of A has determinant 0, 1, or −1. We proceed by induction on
k. The base case k = 1 is easy, because all the entries of an incidence matrix are 0 or 1.

Now consider k > 1 and a k×k submatrix Q. Since the columns of Q correspond to edges, each column
of Q has at most two nonzero entries (which are 1). If there is a column with only zero entries, we get
detQ = 0, and if there is a column with only one nonzero entry, we can expand the determinant on this
column and get that up to sign, detQ equals the determinant of a (k − 1)× (k − 1) submatrix.

The last case is if every column of Q has exactly two 1s. Here we claim that detQ = 0. To see this,
observe that the sum of all rows of Q corresponding to vertices in X is the row vector (1, . . . , 1), since for
each column of Q, exactly one of its two 1s comes from a vertex in X. For the same reason, we get (1, . . . , 1)
by summing up the rows for vertices in Y , and it follows that the rows of Q are linearly dependent.

Problem 8. Prove that a polyhedron described by a totally unimodular matrix and integral right-hand side
is integral.

Proof. Suppose that P = {x ∈ Rn : Ax ≤ b} for a totally unimodular matrix A and vector b with integer
elements. Let x be a vertex of P . Then there exists some B ⊂ [n] such that AB is non-singular, xi = 0 for
all i /∈ B, and xB = A−1

B b. By Cramer’s rule, all the entries of A−1
B can be written as rational numbers with

common denominator of det(AB). But since A is a non-singular unimodular matrix, detA−1
B ∈ {−1, 1}, so

every element of A−1
B is integral. So xB has integral elements and x has integral non-zero elements, which is

what we wanted.

9

NOPT048 LINEAR PROGRAMMING AND COMBINATORIAL OPTIMIZATION MARCEL GOH

Problem 9. Prove that an independence system is a matroid if and only if the weighted greedy algorithm
produces a correct result for all non-negative objective functions.

Proof. First we prove the “if” direction. Let M = (E, I) be an independence system. We proceed by
contraposition. We assume M is not a matroid and show that there exists some non-negative objective
function for which the greedy algorithm fails. So suppose that there exist X,Y ∈ I such that |Y | > |X| and
for all e ∈ Y \X, X ∪ {e} /∈ I. Let c be a weight function given by

c =

{
1 + ϵ if e ∈ X
1 if e ∈ Y \X
0 otherwise

with ϵ to be determined. The Greedy Algorithm should choose a maximum-weight independent set with
cardinality |Y |. But instead, the algorithm chooses all of X, then it completes X to an independent set X ′

of cardinality |Y | by choosing 0-weight elements, for a total weight of |X|(1+ ϵ). Now if we set ϵ < 1
|E| , then

c(X ′) < |X|+ 1 ≤ |Y | ≤ c(Y). So the Greedy Algorithm chose the wrong set.
Now we prove the “only if” direction. Let M = (E, I) denote a matroid this time and we want to show

that if c is a positive objective function, the Greedy Algorithm finds maximum-weight independent sets of
cardinality k for every k satisfying 1 ≤ k ≤ r(E).

Suppose, towards a contradiction, that the algorithm fails for a given k. Concretely, suppose the
algorithm choose Sk = {s1, s2, . . . , sk} with c(s1) ≥ c(s2) ≥ . . . ≥ c(sk) and there exists some set Tk =
{t1, t2, . . . , tk} with c(t1) ≥ c(t2) ≥ . . . ≥ c(tk) and c(Tk) > c(Sk). This means there exists some p with
1 ≤ p ≤ k such that c(tp) > c(sp). Look at the smallest such p. Consider X = {s1, s2, . . . , sp−1} and
Y = {t1, t2, . . . , tp}. Note that |Y | > |X|, so by property 3 of matroids, there exists a tj ∈ Y \X such that
X ∪ {tj} ∈ I. By observation, c(tj) ≥ c(tp) > c(sp), so the Greedy Algorithm should have chosen tj , not sp,
a contradiction.

Problem 10. Prove that the rank function of a matroid is submodular.

Proof. Let M = (E, I) be a matroid and let r denote its rank function. We want to show that for all
X,Y ⊂ E, r(X ∪ Y) + r(X ∩ Y) ≤ r(X) + r(Y). Let J be a maximal independent subset of X ∩ Y . Extend
J to JX , a maximal independent subset of X, and likewise to JY , a maximal independent subset of Y . We
have r(X ∩ Y) = |J | = |JX ∩ JY |. If we can show that r(X ∪ Y) ≤ |JX ∪ JY |, then submodularity follows,
because |JX ∪ JY |+ |JX ∩ JY | = |JX |+ |JY |. Extend JX to a maximal independent subset K of X ∪ Y .

Suppose, towards a contradiction, that |K| > |JX ∪ JY |. Because JX \ J is contained in both K and
JX∪JY , we have |K \(JX \J)| > |JY |. Now, by the choice of JX , we have that K \(JX \J) is an independent
subset of Y . This contradicts the choice of JY .

10

