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ABSTRACT

This thesis presents three results concerning conditional Galton–Watson trees.
Each of these results involves, in some way, the structure or shape of the under-
lying tree.

First we tackle the root estimation problem in Galton–Watson trees, whose
setup is as follows. A Galton–Watson tree is generated with a known offspring
distribution, conditioned on its having n nodes. Next, the parent-child directions
of the edges are erased, so that only the simple-graph structure of the tree
remains. The root estimation problem asks for a maximum-likelihood estimator
for the root of the original tree. We give such an estimator and determine its
probability of being correct.

Next we study the sizes of orbits of nodes in a conditional Galton–Watson
tree under graph automorphism. In the root estimation problem above, it was
convenient to define the multiplicity of a node to be the size of the node’s orbit
under (a certain subgroup of) the free tree’s automorphism group. The prob-
lem of computing the maximum of the multiplicities of the nodes turns out to
be rather difficult, so we introduce a finer partition of the nodes and give an
asymptotic calculation of the size of the largest equivalence class under this
stricter definition of multiplicity.

Finally, we study several parameters of a conditional Galton–Watson tree
that are related to independent sets. We give a formula for the independence
number of a conditional Galton–Watson tree in terms of the offspring generating
function of the distribution. We also analyse the running time of a commonly-
used algorithm that computes the independent set. This corresponds to a struc-
tural parameter of the tree that we call the peel number and we also consider a
similar parameter which we call the leaf height.
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ABRÉGÉ

Cette thèse présente trois résultats concernant les arbres de Galton–Watson.
Chacun de ces résultats implique, d’une certaine façon, la structure ou la forme
de l’arbre sous-jacent.

Premièrement, on attaque le problème d’estimer la racine d’un arbre de
Galton–Watson. Un arbre de Galton–Watson est généré avec une certaine loi
de réproduction, conditionné à avoir n nœuds. Ensuite, les directions des arêtes
sont effacées pour créer un graphe simple, et on est demandé de deviner le nœud
qui a la plus grande chance d’avoir été la racine de l’arbre original. On donne
un estimateur du maximum de vraisemblance et calcule la probabilité qu’il est
exact.

Ensuite, on étudie les cardinalités des orbites des nœuds dans un arbre
de Galton–Watson conditionné sous une action par automorphismes. Dans
le problème d’estimation ci-dessus, il était commode de définer la multiplicité
d’un nœud d’être la cardinalité de son orbite sous (un sous-groupe du) groupe
d’automorphismes de l’arbre. Le problème de calculer le maximum des mul-
tiplicités des nœuds est difficile, alors on introduit une partition plus fine des
nœuds et l’on donne une calculation asymptotique de la cardinalité de la classe
d’équivalence plus grande sous cette notion plus stricte de la multiplicité.

Enfin, on étudie quelques paramètres d’un arbre de Galton–Watson qui sont
reliés aux stables. En utilisant la fonction génératrice de l’arbre, on donne une
formule pour la taille du stable le plus grand dans un arbre de Galton–Watson
conditionné. On analyse aussi le nombre d’étapes utilisées par un algorithme
bien connu pour trouver un stable maximal dans un arbre de Galton–Watson.
Ceci correspond à un paramètre structurel de l’arbre qu’on appelle le nombre
de pelage et on considère aussi un paramètre similaire qu’on appelle la hauteur
foliaire.
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CHAPTER ONE

PRELIMINARIES

1.1. Introduction

The modern concept of a probabilistic branching process dates back to 1845,
when the French mathematician I.-J. Bienaymé used such a model in his work
to study the disappearance of family names [6]. Roughly three decades later,
F. Galton and H. W. Watson independently studied the same problem in Eng-
land [26], and arrived at a model which is essentially identical to Bienaymé’s.
For this reason, Galton–Watson trees are sometimes called Bienaymé trees or
Bienaymé–Galton–Watson trees. See [3] for more on the history of branching
processes.

In Galton and Watson’s model of family names, nodes correspond to male
individuals in a patrilineal population, each of whom passes on the family name
to a random number of sons. All nodes are assumed to reproduce independently
and according to the same distribution. One can illustrate this process by means
of a tree, and if this random tree is finite, then one concludes that the family name
goes extinct after some number of generations. Formally, for any nonnegative-
integer-valued random variable ξ, a Galton–Watson tree is a random tree in
which every node has i children independently with probability pi = P{ξ = i}.
This random variable ξ is called the offspring distribution of the tree. Standard
references on the topic include [4], [29], and [40].

When the expected number of children that each node has is at most 1,
the family name dies out with probability 1; in other words, the Galton–Watson
tree is finite. By conditioning on the event that this finite tree has n nodes,
one obtains a distribution on the space of all rooted trees with n nodes, and
these conditional Galton–Watson trees, which were first studied in 1975 by
D. P. Kennedy [35], are the principal object of study in this thesis. Given an
offspring distribution ξ, we will usually denote by T the unconditional Galton–
Watson tree corresponding to ξ, and we let Tn be the tree T , conditioned on
having n nodes.

An important correspondence between conditional Galton–Watson trees and
certain families of trees (called simply generated trees) was found in 1978 by
A. Meir and J. W. Moon [44], This link has given Galton–Watson trees a new
lease on life in applications to computer science, since for many important fam-
ilies of simply generated trees, there exists ξ with E{ξ} = 1 such that sampling
Tn is the same as choosing uniformly from all trees of size n in the family. As
can be seen in the following examples, this covers many of the trees that arise
in the design and analysis of algorithms.

1



2 PRELIMINARIES 1.1

i) When ξ ∼ Binomial(d, 1/d), the conditional Galton–Watson tree is a d-ary
tree or a binomial tree. These are trees in which every node may have up
to d children and the placement of the children is important; every node
has d “slots” in which children can be placed. As a result, a node can have
i children in

(

d
i

)

ways. When d = 2, these trees are often called Catalan
trees, because in this case the number of trees on n nodes is the nth Catalan
number

(

2n
n

)

/(n + 1).

ii) When ξ ∼ Poisson(1), we have a random rooted Cayley tree. These can
otherwise be sampled by choosing uniformly from all nn−2 free trees (con-
nected acyclic graphs) on n labelled nodes, and then picking a random node
to be the root. We then hang the tree from the root, ordering the children
of each vertex from smallest to largest label. Finally, we remove the labels
to obtain a rooted ordered tree.

iii) The distribution p0 = p1 = p2 = 1/3 generates a random Motzkin tree.
These are also sometimes called unary-binary trees, since each node can
either have one or two children. Motzkin trees are similar to Catalan trees,
except that a node can have exactly one child in only one way, whereas in a
Catalan tree, every node has two ways of having one child.

iv) A Geometric(1/2) offspring distribution gives rise to a uniformly random
rooted ordered tree. Since every Galton–Watson tree is technically a rooted
ordered tree, whenever we wish to be clear that the distribution over the
space of all rooted ordered trees of size n is uniform, we shall call trees in
this family planted plane trees.

v) For t ≥ 2, the distribution with p0 = 1−1/t and pt = 1/t generates a tree in
which every child has either 0 nodes or t nodes. We call these trees Flajolet t-
ary trees, after the French computer scientist P. Flajolet. When t = 2, these
are sometimes also called Catalan trees, since there is a bijection between
Flajolet 2-ary trees on 2n + 1 nodes and the Catalan trees we described
above on n nodes. To avoid any confusion, we will always call Flajolet 2-ary
trees full binary trees instead of Catalan trees.

These correspondences give us a way to pick uniformly at random from any
such family of trees; we simply generate a conditional Galton–Watson tree, which
can be done in linear expected time [18].

As n gets large, the conditional Galton–Watson tree approaches a cer-
tain infinite tree which we call Kesten’s limit tree, as it was first described
by H. Kesten [37]. It will come up a number of times in our work, so we
briefly describe it here. We work with an offspring distribution ξ for which
E{ξ} =

∑

i≥1 ipi = 1. So if ζ is the random variable with P{ζ = i} = ipi for all
i ≥ 1, then ζ is a valid offspring distribution as well. Kesten’s limit tree T∞ is
an infinite tree consisting of a central spine of nodes, one on each level, that each
produce ζ children. Nodes that are not on the spine are roots of unconditional
Galton–Watson trees with distribution ξ (each of these is finite with probability
1). Let τ(T∞, h) denote the tree T∞, limited to levels 0, . . . , h. Kesten’s limit
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tree is important to us because for all h and all infinite trees t, a Galton–Watson
tree Tn conditioned to be of size n converges locally to it, in the sense that

lim
n→∞

P
{

τ(Tn, h) = τ(t, h)
}

= P
{

τ(T∞, h) = τ(t, h)
}

. ()

Letting TV denote total variation distance, we can say something stronger. It is
known (see [36] and [50]) that if V{ξ} <∞ and k = o(

√
n), then

lim
n→∞

TV
(

τ(T∞, k), τ(Tn, k)
)

= 0, ()

and we will make use of this in Chapters 3 and 4.
The remainder of this chapter will be dedicated to laying out the preliminary

definitions and technical results that will be used in subsequent chapters. We
give many of these well-known results without proof, but there are some minor
lemmas which, to our knowledge, do not have proofs in the literature (though
they too are for the most part essentially well-known in the field). For these
lemmas we shall supply a proof. The barrage of technical propositions may be
somewhat unmotivated upon first reading, so the reader should consider skipping
from the end of this section to the beginning of Chapter 2, returning to this
chapter to read proofs of the technical results only after seeing them in action.

The statements and proofs that will comprise the rest of this chapter appear
in a dedicated section of a paper jointly written with A. M. Brandenberger and
L. Devroye [9]. The second chapter of this thesis discusses the main result
of this paper, namely, a solution to the root estimation problem in conditional
Galton–Watson trees. In particular, we show that, barring any oddities in the
distribution that make it possible to find the root with probability 1, the best
strategy is to choose uniformly from all the nodes of graph-degree i that maximise
the ratio ipi/pi−1. Of course, there may be multiple possible degrees i to choose
from. We also show that in this case we have

lim
n→∞

nP{C} = sup
i≥1

ipi
pi−1

, ()

where P{C} denotes the probability that the estimator is correct.
The third chapter is based on joint work with A. M. Brandenberger, L. De-

vroye, and R. Y. Zhao [10]. It concerns the notion of the multiplicity µF(v)
of a node v, which was important to the derivation of the maximum likelihood
estimator developed in Chapter 2. Let Mn be the maximum value of µF(v) over
all nodes v in a conditional Galton–Watson tree Tn. We were not able to find
matching upper and lower bounds on Mn, but we define a stricter notion of mul-
tiplicity, with corresponding random variable Sn, and study Sn instead. We are
able to prove that Sn = Ω(log n) asymptotically in probability, and under the
further assumption that E{2ξ} is finite, we have Sn = O(logn) asymptotically
in probability as well. Explicit formulas, depending on the distribution, for the
constants in the asymptotic bound are given in both cases.
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The fourth and final chapter is unrelated to the second and third, focusing on
maximum-size independent sets and the running-time of algorithms used to find
them. We give a formula for the independence number (the size of the largest
independent set) of a conditional Galton–Watson tree. Letting f denote the
reproduction generating function of the offspring distribution ξ, we find that the
independence number is in probability asymptotic to qn, where q is the unique
solution in [0, 1] to the equation q = f(1−q). One of the many algorithms used to
find independent sets in trees loops through the tree, peeling away layers of nodes
until no nodes are left. We say that a tree has peel number ρ if the algorithm takes
ρ loops to compute a maximum-size independent set in the tree. We show that
the peel number of a conditional Galton–Watson tree is in probability asymptotic
to log n/ log

(

1/f ′(1−q)
)

. The notion of a peel number is rather similar in nature
to another parameter of a rooted tree, namely, the length of the shortest path
from the root to a leaf. This is called the protection number in the literature,
but we have decided to call it the leaf height in our work, as we believe this name
to be more illustrative. One can also define the leaf height of any node in the
tree by simply considering it as the root of a subtree. When p1 > 0, we show
that the maximum leaf height over all nodes in Tn is in probability asymptotic
to log n/ log(1/p1). If p1 = 0 and κ is the first integer i > 1 with pi > 0, then the
leaf height is in probability asymptotic to logκ logn. This last chapter is based
on joint work with L. Devroye and R. Y. Zhao [19].

1.2. Basic probabilistic notions

The probability theory we use in this thesis is discrete, down-to-earth, and un-
pretentious; no notions from measure theory shall explicitly be used. We write
P{E} to denote the probability of an event E, and write 1E for the random
variable that equals 1 when E is true and 0 when E is false. The expectation of
a random variable X is denoted by E{X} and the variance E

{

(X −E{X})2
}

is
denoted by V{X}. When E{X} exists, the fact that it is an “average” of some
sort is supported by the law of large numbers, which, in its weak form, asserts
that for a sequence of independent random variables X1, X2, . . ., all distributed
as X, we have

lim
n→∞

P

{
∣

∣

∣

∣

1

n

n
∑

i=1

Xi −E{X}
∣

∣

∣

∣

< ǫ

}

= 1. ()

for arbitrary ǫ > 0. In general, if for some sequence Xn of random variables there
exists a random variable X such that for all ǫ > 0, P

{

|Xn −X| > ǫ
}

→ 0, then
we say that Xn converges in probability to X. In most of the cases we encounter,
the random variable X is actually a constant, as it is in the statement of the
weak law of large numbers. If a nonnegative sequence Xn is such that there
exists a function f(n) with

lim
n→∞

P
{

(1− ǫ)f(n) < Xn < (1 + ǫ)f(n)
}

= 0 ()
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for arbitrary ǫ > 0, then we say that Xn is in probability asymptotic to f(n). If
for any ǫ > 0 we are only able to show that

lim
n→∞

P
{

Xn < (1 + ǫ) · Cf(n)
}

= 0, ()

for some constant C > 0, then we say that Xn = O
(

f(n)
)

asymptotically in
probability; likewise, if for some constant c > 0 we have

lim
n→∞

P
{

(1− ǫ) · cf(n) < Xn

}

= 0, ()

then Xn = Ω
(

f(n)
)

asymptotically in probability.
As can be seen from the definitions of convergence of random variables,

establishing probabilistic inequalities will be the name of the game in the chapters
to come. The first tool for doing so is the indispensable union bound

P
{

∞
⋃

i=1

Ei

}

≤
∞
∑

i=1

P{Ei}, ()

valid for any countable collection E1, E2, . . . of events. We will also make use of
some simple tail inequalities for a real-valued random variable X. The first is
Markov’s inequality, which states that for any ǫ > 0,

P{X ≥ ǫ} ≤ E{X}
ǫ

. ()

Replacing X by X −E{X} and ǫ by ǫ2 yields Chebyshev’s inequality

P
{

|X −E{X}| ≥ ǫ
}

≤ V{X}
ǫ2

. ()

This inequality was stated without proof by I.-J Bienaymé in 1853 [7] and proved
by P. Chebyshev in an 1867 paper [14]. Markov’s inequality is named after
Chebyshev’s student A. Markov, but it was also used extensively in the work of
Chebyshev himself, and many references (e.g., [49]) attribute both propositions
to him.

1.3. The cycle lemma

When it is finite, a Galton–Watson tree, like all rooted ordered trees, is de-
termined entirely by its sequence of the degrees of its nodes, enumerated in
depth-first preorder. Since each of these nodes has a degree equal to an indepen-
dent copy of the random variable ξ, we shall list the degrees ξ1, ξ2, . . . , ξn. On
the other hand, if a sequence of degrees ξ1, ξ2, . . . is such that there exists some
t > 0 with

t
∑

i=1

ξi = t− 1 and
k
∑

i=1

ξi ≥ k

for all 1 ≤ k < t, then the tree that the first t degrees define in depth-first
preorder is finite, with exactly t nodes (and ξt+1, ξt+2, . . . are meaningless from
the point of view of the tree, since the process has already gone extinct).

We now state a result of Dwass [21] that underpins much of our work on the
conditional Galton–Watson tree.
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Theorem 1.1 (Dwass’ cycle lemma, 1969). Let ξ be an offspring distribution
with mean 1 and let ξ1, ξ2, . . . be a sequence of independent random variables
distributed as ξ. Let T be the tree that this sequence defines when considered
to be degrees of nodes listed in preorder. The probability that |T | = n equals

1

n
P
{

n
∑

i=1

ξi = n− 1
}

. ()

The event that
∑n

i=1 ξi = n − 1 is thus very important to us and we shall
often denote it by A. Given any sequence ξ1, . . . , ξn that sums to n− 1, exactly
one of the n cyclic permutations of the variables defines a tree (i.e., the kth
partial sums are ≥ k for 1 ≤ k < n). Thus for any event B on an unconditional
Galton–Watson tree T that only concerns the first n degrees ξ1, . . . , ξn and which
holds for any cyclic permutation of the ξi, we have

P{B | |T | = n} =
P{B ∩ |T | = n}
P{|T | = n} =

P{B ∩A}/n
P{A}/n =

P{B ∩A}
P{A} = P{B | A}.

()
The cycle lemma allows us to study events on a conditional Galton–Watson

tree by considering sums of independent random variables. In view of this, we
collect here three theorems concerning such sums. When the random variables
involved are bounded from above and below, we have the following inequality,
due to W. Hoeffding [31].

Theorem 1.2 (Hoeffding, 1963). Let [a, b] ⊆ R be any closed interval and let
X1, X2, . . . , Xn be real-valued random variables with Xi ∈ [a, b] for all 1 ≤ i ≤ n.
Then for all ǫ > 0,

P

{

∣

∣

∣

n
∑

i=1

(

Xi −E{Xi}
)

∣

∣

∣
> ǫ

}

≤ 2 exp

( −2ǫ2

n(b− a)2

)

. ()

When the Xi are all Bernoulli(p) random variables (which take values in the
closed interval [0, 1]), their sum X is distributed as Binomial(n, p), and Hoeff-
ding’s inequality tells us that

P
{

|X − np| > ǫ
}

≤ 2e−2ǫ2/n ()

for all ǫ > 0. This result was found earlier by H. Chernoff [16].
Next, we have a theorem due to B. A. Rogozin [47]. The statement and

proof of this inequality can be found in [45].

Theorem 1.3 (Rogozin, 1961). Let X1, . . . , Xn be i.i.d. random variables and
let s = supx P{X1 = x}. There is some universal constant α such that

sup
x

P{X1 + · · ·+ Xn = x} ≤ α
√

n(1− s)
. ()

Let the period of a nonnegative-integer-valued random variable X be the
greatest common divisor of all the integers i for which P{X = i} > 0. The final
theorem regarding sums of independent random variables that we list here is due
to V. F. Kolchin [38].
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Theorem 1.4 (Kolchin, 1986). Let X1, . . . , Xn be i.i.d. random variables on
[0,∞) of mean 1 and variance σ2 > 0. Let h denote the period of X1 and let S
be the set of all integers x such that n + x ≡ 0 (mod h). Then

sup
x∈S

∣

∣

∣

∣

√
nP{X1 + · · ·+ Xn = n + x} − h

σ
√

2π
e−x2/(2nσ2)

∣

∣

∣

∣

→ 0 ()

as n→∞. If n + x 6≡ 0 (mod h), then P{X1 + · · ·+ Xn = n + x} = 0.

In asymptotic terms, Kolchin’s estimate tells us that if ξ1, . . . , ξn are inde-
pendent copies of a random variable ξ with mean 1 and variance σ2, then

P
{

n
∑

i=1

ξi = n− 1
}

=
h
(

1 + o(1)
)

σ
√

2πn
, ()

where h is the period of ξ. Combining this with Dwass’s theorem above, if ξ is
the offspring distribution of an unconditional Galton–Watson tree T , then

P{|T | = n} =
h
(

1 + o(1)
)

σ
√

2πn3/2
= Θ(n3/2). ()

1.4. Degree statistics

We now divert our attention to the distribution of node degrees in a conditional
Galton–Watson tree, namely, the number of nodes of a given degree i as well as
the maximum degree. The key observation is that since the random variables
ξ1, . . . , ξn are themselves the degrees, both of these statistics stay the same when
the ξi are permuted. The following lemma is due to D. Aldous [2] and S. Jan-
son [33], but we give an alternative proof using the cycle lemma and Kolchin’s
estimate.

Lemma 1.5 (Aldous, 1991; Janson, 2016). Let Tn be a conditional Galton–
Watson tree with offspring distribution ξ satisfying E{ξ} and 0 <V{ξ} < ∞,
and let

Ni,n =

n
∑

k=1

1[ξk=i] ()

be the number of nodes of degree i in Tn. For any i, Ni,n/n→ pi in probability
as n→∞.

Proof. Let ǫ > 0 be given. Let A be the event that
∑n

i=1 ξi = n − 1 and let B
be the event that |Ni,n/n− pi| > ǫ. Note that B is rotation-invariant. So by the
cycle lemma, we have

P{B | |T | = n} = P{B | A} =
P{B ∩A}
P{A} ≤ P{B}

P{A} . ()
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Next, Kolchin’s estimate states that

P{A} =
h
(

1 + o(1)
)

σ
√

2πn
, ()

where h is the period of ξ1. Also, since E{Ni,n} = npi and

V{Ni,n/n} =
V{1[ξ1=i]}

n
=

pi(1− pi)

n
, ()

we have, by Chebyshev’s inequality,

P{B} ≤ V{Ni,n/n}
ǫ2

≤ pi(1− pi)

nǫ2
, ()

and substituting () and () into () yields

P{B | |T | = n} ≤ pi(1− pi)σ

h
(

1 + o(1)
)

ǫ2

√

2π

n
, ()

which goes to 0 as n→∞.

Of course, the result of this lemma is entirely predictable, since if ξ1, . . . , ξn
are independent copies of ξ, then the fraction of the ξi that are equal to i con-
verges to pi by the weak law of large numbers. The next result about the
maximum degree is just as predictable, though a bit harder to prove.

Lemma 1.6. Let Tn be a conditional Galton–Watson tree with offspring distri-
bution ξ with mean 1 and variance σ2 satisfying 0 < σ2 <∞, and let Mn be the
maximal degree among all the nodes in Tn. Fix an integer x. Letting o(1) stand
for any quantity that tends to 0 as n→∞ independent of x, we have

P{Mn ≥ x} ≤
(

1 + o(1)
)

nP{ξ ≥ x} ()

and
P{Mn ≤ x} ≤

(

β + o(1)
)

exp
(

−nP{ξ > x}
)

, ()

for a constant β depending on ξ but not n.

Note that if we have a sequence of n i.i.d. random variables ξi, the same
bounds can be derived without the

(

1 + o(1)
)

and
(

β + o(1)
)

factors. Hence this
lemma shows that asymptotically, nothing is lost by conditioning on the size of
a Galton–Watson tree.

Proof. Let ξ1, . . . , ξn be independent random variables distributed as ξ and let
T be the tree built using the ξi. Let A be the event that

∑n
i=1 ξi = n − 1 and

note that
P{Mn ≥ x} = P

{

max
1≤i≤n

ξi ≥ x | |T | = n
}

. ()
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Of course, the event that max1≤i≤n ξi ≥ x is invariant under rotation, and so
is the analogous statement for P{Mn ≤ x}. For the upper bound, we expand
using the cycle lemma and apply the union bound, obtaining

P
{

max
1≤i≤n

ξi ≥ x | |T | = n
}

=
P
{

max1≤i≤n ξi ≥ x, A
}

P{A}

≤ n

P{A} P
{

ξ1 ≥ x,
n
∑

i=1

ξi = n− 1
}

=
n

P{A}

∞
∑

j=x

P{ξ1 = j}P
{

n
∑

i=2

ξi = n− 1− j
}

.

()
Let h be the period of ξ1. Using Kolchin’s estimate twice, we obtain the upper
bound

P{Mn ≥ x} ≤ n3/2σ
√

2π

h
(

1 + o(1)
)

∞
∑

j=x

pj
he−j2/(2σ2(n−1)) + o(1)

σ
√

2π(n− 1)

≤ n

√

n

n− 1

(

∑

j≥x

pj

)

(

1 + o(1)
)

≤
(

1 + o(1)
)

nP{ξ ≥ x}.

()

Next we tackle the lower bound, by an independence argument. We have

P{Mn ≤ x} =
P
{

max1≤i≤n ξi ≤ x,A
}

P{A}

= P
{

max
1≤i≤n

ξi ≤ x
}P
{

A | max1≤i≤n ξi ≤ x
}

P{A} .

()

Well, P
{

A | max1≤i≤n ξi ≤ x
}

= P{∑n
i=1 ξ

∗
i = n−1}, where ξ∗1 , . . . , ξ

∗
n are i.i.d.

with

P{ξ∗1 = i} =

{

P{ξ1 = i}/P{ξ1 ≤ x}, if i ≤ x;
0, if i > x.

()

Let η = min{i > 0 : pi > 0}. Then, for x ≥ η, we let p = maxi≤x pi/(p0+· · ·+px)
and note that p < 1. Therefore, by Rogozin’s inequality, there is a universal
constant α such that

P
{

n
∑

i=1

ξ∗i = n− 1
}

≤ α
√

n(1− p)
. ()

Putting

β =
α√

1− p
· σ
√

2π

h
, ()

we have, for x ≥ η,
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P{Mn ≤ x} ≤ P
{

max
1≤i≤n

ξi ≤ x
}

· β
(

1 + o(1)
)

∼ βP{ξ ≤ x}n

≤ β exp
(

−nP{ξ > x}
)

,

()

On the other hand, if x < η and n > 1, then P{Mn ≤ x} = 0 since max1≤i≤n ξi <
η implies max1≤i≤n ξi = 0 and thus |Tn| = 1. The above bound therefore still
holds.

1.5. Weighted sums

We close this chapter with an asymptotic analysis of a certain weighted sum. This
random variable appears at a crucial point in Chapter 2. Though it can hardly
be considered an important proposition in its own right and is used nowhere else
in the thesis, we have decided to place its proof here, as, being rather long and
technical, it would detract from the flow of the second chapter.

Lemma 1.7. Let ξ be an offspring distribution with mean 1 and nonzero finite
variance. Write pi = P{ξ = i}. Setting S = {i ∈ N : pi > 0, pi−1 = 0}, assume
furthermore that the probabilities pi that define ξ satisfy supi≥1,i/∈S pi/pi−1 <∞.
Writing

γ =
∑

j /∈S

jpj , ()

the random variable

Wn =
n
∑

i=1

1

pξi
(ξi + 1)pξi+11[pξi

6=0] ()

satisfies

i) Wn/(γn)→ 1 in probability as n→∞;

ii) E{γn/Wn | ξ1 + · · ·+ ξn = n− 1} → 1; and

iii) E
{

(γn/Wn)2
∣

∣ ξ1 + · · ·+ ξn = n− 1
}

→ 1.

Note that γ ≤ 1 and if S = ∅, then γ = E{ξ} = 1 and in this case part (i)
of the lemma says that Wn/n→ 1.

Proof. Note that

E

{

(ξ + 1)pξ+1

pξ
1[pj 6=0]

}

=
∞
∑

j=0

pj
pj

(j + 1)pj+11[pj 6=0] =
∞
∑

j=1

jpj1[pj−1 6=0] = γ,

()
so that E{Wn} = γn, and also
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E

{(

(ξ + 1)pξ+1

pξ
1[pj 6=0]

)2}

=
∞
∑

j=0

pj
pj2

(j + 1)2p2j+11[pj 6=0]

≤
(

sup
j≥1,j /∈S

pj
pj−1

)

∞
∑

j=0

(j + 1)2pj+1

= sup
j /∈S

pj
pj−1

(σ2 + 1).

()

By Chebyshev’s inequality, for any arbitrary ǫ > 0,

P

{
∣

∣

∣

∣

Wn

γn
− 1

∣

∣

∣

∣

> ǫ

}

≤ V{Wn}
n2ǫ2

≤ (σ2 + 1)supj 6∈S pj/pj−1

nǫ2
. ()

Therefore, arguing as before and letting A be the event that
∑n

i=1 ξi = n − 1,
we have

P

{∣

∣

∣

∣

Wn

γn
− 1

∣

∣

∣

∣

> ǫ
∣

∣

∣
|T | = n

}

≤ P
{

|Wn/γn− 1| > ǫ
}

P{A} = O

(

1√
n

)

. ()

We have thus proved part (i).
Parts (ii) and (iii) take a bit of elbow grease. Strictly speaking, (iii) implies

(ii), but for simplicity of presentation, we show how to prove (ii) and then de-
scribe where the proof changes for (iii). Let ǫ > 0 once again be arbitrary. First,
we observe that

E

{

γn

Wn

∣

∣

∣
|T | = n

}

≥ γn

γn(1 + ǫ)
· P{Wn < γn(1 + ǫ), A}

P{A}

=
1

1 + ǫ

(

1− P{Wn ≥ γn(1 + ǫ), A}
P{A}

)

≥ 1

1 + ǫ
−O

(

1√
n

)

,

()

since Wn/γn → 1 in probability and P
{

Wn ≥ γn(1 + ǫ)
}

= O(1/n), by (i).
Similarly we have

E

{

(γn)
2

Wn
2

∣

∣

∣
|T | = n

}

≥ (γn)
2

(γn)
2
(1 + ǫ)2

P{Wn ≥ γn(1 + ǫ), A}
P{A}

≥ 1

(1 + ǫ)2
−O

(

1√
n

)

.

()

It remains to show that E
{

γn/Wn

∣

∣ |T | = n
}

≤ 1+o(1) as well as the analagous

statement for (γn)2/Wn
2. To that end, note that

Wn ≥
n
∑

i=1

1[ξi=0] ·
1

p0
p1. ()

Letting N0 =
∑n

i=1 1[ξi=0] so that Wn ≥ N0p1/p0, we observe that N0 ∼
Binomial(n, p0) and apply the binomial case of Hoeffding’s bound to obtain,
for δ < min{p0, 1− p0},
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P
{

|N0 − np0| > δn
}

≤ 2e−2nδ2 . ()

Now choose δ = ǫ/n1/ǫ. Then, by rotation-invariance of Wn, we have

E

{

γn

Wn

∣

∣

∣
|T | = n

}

=
E
{

(γn/Wn)1A

}

P{A} ()

by the cycle lemma and

E
{

(γn/Wn)2
∣

∣ |T | = n
}

=
E
{

(γn/Wn)2 1A

}

P{A} , ()

and we recall that P{A} = Θ(1/
√
n). Also,

E

{

γn

Wn
1A

}

≤ E

{

γn

(1− ǫ)γn
1A

}

+ E

{

γn

Wn
1[Wn≤(1−ǫ)γn] 1A

}

≤ 1

1− ǫ
P{A}+ E

{

p0
p1
· γn
N0
· 1[N0≤np0/2] ·1A

}

+ E

{

p0
p1
· 2γn

np0
· 1[Wn≤(1−ǫ)γn]

}

.

()

Letting E1 and E2 denote the two expectation terms on the right-hand side, we
note that since A implies that N0 ≥ 1,

E1 = (γn/Wn)2γnP{N0 ≤ np0/2} ≤ p0
p1

2n exp
(

−2γn(p0/2)2
)

. ()

Furthermore,

E2 =
2γ

p1
P
{

Wn ≤ (1− ǫ)γn
}

= O

(

1

n

)

()

follows from Chebyshev’s inequality, just as in the proof of (i) above. This implies
that

E

{

γn

Wn

∣

∣

∣
|T | = n

}

≤ 1

1− ǫ
+

O(1/n)

O(1/
√
n)

=
1 + o(1)

1− ǫ
, ()

and we have settled part (ii), since ǫ was chosen arbitrarily. For part (iii), we
proceed the same way to obtain

E

{

(γn)
2

Wn
2 1A

}

≤ 1

(1− ǫ)2
P{A}+ E

{

(γn)2

Wn
2 1[Wn≤(1−ǫ)(γn)2] 1A

}

≤ 1

(1− ǫ)2
P{A}+ E

{

p0
2

p12
· (γn)2

N0
2 · 1[N0≤np0/2] ·1A

}

+ E

{

p0
2

p12
· 4(γn)2

n2p20
· 1[Wn≤(1−ǫ)γn]

}

≤ 1

(1− ǫ)2
P{A}+

p0
2

p12
(γn)2 P{N0 ≤ np0/2}

+
4γ2

p12
P{Wn ≤ (1− ǫ)γn},

()

from which we complete the proof in the same manner.



CHAPTER TWO

ROOT ESTIMATION

2.1. Introduction

There are two different, equally important, notions of a tree. The first is
the unrooted or free tree, which is a connected unlabelled acyclic graph, and the
second is the rooted tree, in which a single node is distinguished as the root and
each edge has a direction from a child to its parent (so all edges point towards
the root). Any free tree can be converted into a rooted tree by choosing a root
node and setting all of the edge directions accordingly. Likewise, any rooted tree
can be seen as a free tree by “forgetting” the directions of the edges. The root
estimation problem asks for a method that will recover the root of the underlying
rooted tree from the free-tree structure.

Given a free tree of size n, uniformly chosen from among all n-node free
trees of a certain family, an easy strategy would be to pick a node uniformly at
random; this estimator has a success probability of 1/n. There are some trees
for which this is the optimal estimator, but we will see that in most cases, we
will be able to do much better. Of course, it is easy to cook up a family of trees
whose structure ensures that the root can be guessed with certainty every time
(an obvious example is the the complete binary tree on 2n − 1 nodes). In many
cases we will not be so fortunate, but often there is an estimator that guesses
the root with probability asymptotically equal to c/n, where c > 1. We solve
the root estimation problem on conditional Galton–Watson trees and exploit the
connection between these trees and various families in the uniform tree model to
give a general approach to root estimation. The problem was first considered by
J. Haigh for uniform attachment trees [28]. More recently, S. Bubeck, L. Devroye,
and G. Lugosi showed that on uniform attachement and preferential attachment
trees, one can construct a confidence set of nodes that contains the root, where
the size of this confidence set does not depend on the number of nodes in the
graph [13].

Our mission can be formalised as follows. Let a conditional Galton–Watson
tree with n nodes be given and suppose that the directions of the edges are
erased; that is, we are shown only the free-tree structure Fn. The goal is to
develop a strategy that determines the node with the highest likelihood to have
been the root of the original Galton–Watson tree. We would also like to know
the probability that we are correct.

A concrete example. It is instructive to work through a small toy example

13
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using a näıve counting method. Suppose the offspring distribution is

p0 =
1

4
, p1 =

1

2
, p2 =

1

4
,

and pi = 0 for all other i. Conditioning on the number of nodes n generates a
Catalan tree uniformly at random. Fig. 2.1 illustrates the fourteen possibilities
when n = 4.

Fig. 2.1. The free-tree structure of Catalan trees with four nodes.

There are only two possible free trees with four nodes and one is much more
likely to arise by this process than the other. If we are shown a path graph,
we are best off choosing one of the endpoints, since an endpoint is the root in
8 of the 12 cases and we will guess the correct endpoint with probability 1/2
(there are two identical endpoints). In this case, the probability of our guessing
correctly is 1/3. When the free tree is the star graph, we should also choose one
of the endpoints, since the central node is never the root. Of course, we can still
only be correct with probability 1/3 because there are three identical endpoints.

The probabilistic approach. This family of trees illustrated in Fig. 2.1 was
small enough to obtain a maximum likelihood estimator (MLE) by simply count-
ing, but for larger trees and more complex offspring distributions, this will not be
feasible. The method we develop will be general and powerful enough to give an
MLE for the root on conditional Galton–Watson trees with any critical offspring
distribution ξ and any size n. We will find that the optimal strategy for picking
a root is as follows.

i) If pi > 0 and pi−1 = 0 for some i ≥ 1 and there exists a node in the free
tree with graph-degree i, then only one such node can exist and we select it
as our guess. The probability that this node is the root, conditional on its
existence in the free tree, is 1.

ii) Otherwise, we choose a node uniformly from the nodes of graph-degree i that
maximise ipi/pi−1 (note that there could be multiple integers i for which
this ratio is maximal).

Note that determining the MLE for a given tree is computationally easy, and
we can give an explicit formula for the probability of correctness in the second
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case. We also analyse the correctness of the MLE as the number of nodes in
the tree tends to infinity, showing in Theorem 2.2 that for Galton–Watson trees
with offspring distribution satisfying supi≥1 pi/pi−1 < ∞ and 0 < σ2 < ∞, the
probability P{C} of the MLE being correct satisfies

lim
n→∞

n ·P{C} = sup
i≥1

ipi
pi−1

. ()

Thus, for a large class of tree families for which this supremum is finite, e.g., d-ary,
Cayley and Motzkin trees, the probability of correctness of the MLE decreases
linearly with the size of the tree.

2.2. Automorphisms and probabilities

We start off by establishing some terminology and notation. The setup is as
follows. We will denote by Fn a free tree on n nodes. This is simply an acyclic
graph on n vertices, and is a priori unlabelled, though we may choose labels for
the nodes when convenient. If a node u is selected and the rest of the tree is
allowed to hang from it as if by gravity, then we have the u-rooted tree, where
the parent of a node is its immediate neighbour in the path towards u.

In the u-rooted tree, we define the tree-degree of a node v to be the number
of children of v; this is denoted degu(v). The graph-degree of v, written deg∗(v),
is the original degree of v in the free tree Fn. For every node v different from u
in the u-rooted tree, we have degu(v) = deg∗(v) − 1 and u is the only node for
which the two degrees are equal. The number of nodes of a given tree-degree i in
the u-rooted tree is denoted Nu

i ; the analogous value for the free tree is denoted
N∗

i . The tree-degree and graph-degree are, in various places, referred to simply
as “degree” (where context explains which is meant).

An automorphism of a free tree Fn is a graph isomorphism from Fn to itself,
i.e., a bijection from the set of vertices of F to itself that preserves the adjacency
structure. The group of all such maps is denoted Aut(Fn). We shall define the
multiplicity µF(v) of a node v ∈ Fn to be the size of its orbit under the action
of Aut(Fn). In Chapter 3, we shall define other notions of multiplicity, and this
version µF of multiplicity will be referred to as the free multiplicity.

The notion of free tree automorphisms is used to define the multiplicity,
but in fact the number of automorphisms of a rooted tree is more pertinent to
our problem. Assuming some node u as the root, this is the number of ways
that subtrees with the same parent can be permuted amongst themselves while
leaving u firmly planted at the top of the tree. In group-theoretic parlance, this
is the stabiliser subgroup Stab(u) of the automorphism group of Fn.

Every Galton–Watson tree is a rooted ordered tree, and we note that if
we reorder the children of any given node, we obtain another Galton–Watson
tree with exactly the same tree-degree counts, and thus the same probability
of occurrence. Repeat this at every node and let Perm(T ) be the number of
possible such reorderings that one can perform on a given rooted ordered tree
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T ; it is clear that there are
∏

v∈T

degu(v)! ()

such reorderings. But some permutations leave the tree unchanged (if two sub-
trees of a given node happened to be indistinguishable, then transposing them
does not produce a new tree, in the unordered sense). This happens when, at
every node, the reordering only sends children to a slot previously occupied by
a node in the same orbit of Stab(u).

w

u

2!

3!

2!

Fig. 2.2. An example tree, in which Stab(u) = 2! · 3! · 2! = 96.

For a tree T with root node u, we let Perm(u) be the number of distinct un-
labelled rooted ordered trees that can be obtained from T by reordering children
of nodes. It is given by the formula

Perm(u) =
1

∣

∣Stab(u)
∣

∣

∏

v

degu(v) ()

Last but not least, we denote by Prob(u) the Galton–Watson probability of the
u-rooted tree. Since each node has a probability pi of having i children, this
equals

Prob(u) =
∞
∏

i=0

pNi
i . ()

Now let Fn be a free tree obtained by removing the parent-child information
from a conditional Galton–Watson tree. The probability of a node u ∈ Fn being
the root is the Galton–Watson probability of the u-rooted tree times the number
of distinct rooted ordered trees one can obtain via permutations of children. But
any node in u’s orbit under Aut(Fn) could have been the root of an identical
tree, so we must divide by µF(u). Hence the probability that u is the root is
proportional to

Prob(u) Perm(u)

µF(u)
=

Prob(u)

µF(u)
∣

∣Stab(u)
∣

∣

∏

v

degu(v)! =
Prob(u)
∣

∣Aut(Fn)
∣

∣

∏

v

degu(v)!; ()

one must of course introduce a normalising factor to ensure that this is indeed a
valid probability distribution. Note that the last equality above is a consequence
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of the orbit-stabiliser theorem (see, e.g., [34]). Our maximum likelihood estima-
tor will thus need to choose a node u that maximises this probability. Given
a Galton–Watson offspring distribution, we will denote by C the event that the
MLE is correct for any corresponding free tree of size n, and we seek to determine
both P{C}, the probability of success of the MLE, and P{C | Fn}, the probability
of success given a specific free tree Fn. Note that

P{C} = EFn

{

P{C | Fn}
}

, ()

where the expected value is taken over all free trees of size n that could arise by
the distribution.

2.3. Estimating the root

We are now ready to prove the first significant result. Since
∣

∣Aut(Fn)
∣

∣ does
not depend on the choice of root, this boils down to maximising the quantity
Prob(u)

∏

v degu(v)!. The following theorem shows that this can be done know-
ing only the offspring distribution and the given free-tree structure Fn. To
simplify notation, for i ≥ 1 we define

Ri =
ipi
pi−1

.

Note that throughout the chapter, we will assume that 0/0 = 0, capturing the
cases where both pi and pi−1 are equal to zero.

Theorem 2.1. Given a free tree Fn corresponding to some Galton–Watson
tree with offspring distribution pi, the strategy to maximize the probability of
picking the original root is to select uniformly from the nodes of graph-degree i
that maximise Ri. More specifically, defining

M = sup
j≥1
{Rj : pj 6= 0 and there exists u ∈ Fn such that deg∗(u) = j} , ()

the maximum likelihood estimate for picking the root is to choose a node uni-
formly from the candidate set

Ω = {u ∈ Fn : deg∗(u) = i, Ri =M} . ()

Letting P{C | Fn} be the probability that this MLE returns the correct root of
Fn, we have

P{C | Fn} =

{

1, ifM =∞;
M/

∑

v∈Fn
Rdeg∗(v), ifM <∞. ()

Proof. The probability that any node u ∈ Fn is the root is given by the for-
mula (). Thus the goal is to pick a node u that maximises Prob(u)

∏

v degu(v)!.
Suppose we choose some u with deg∗(u) = i, i ≥ 1.
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Note that all the nodes have graph-degree one greater than their tree-degree,
except for the root u, where the two degrees are the same. So for all j 6∈
{i−1, i}, Nu

j = N∗
j+1 and Ni = N∗

i+1 +1, Nu
i−1 = N∗

i −1. We proceed, obtaining

Prob(u)
∏

v

degu(v)! =

∞
∏

j=0

p
Nu

j

j

∏

v

degu(v)!

=

∞
∏

j=0

p
Nu

j

j (j!)N
u
j =

∏

j

(j!pj)
Nu

j

= (i!pi)
Ni
(

(i− 1)!pi−1

)Nu
i−1

∏

j /∈{i,i−1}

(j!pj)
Nu

j

= (i!pi)
N∗

i+1+1
(

(i− 1)!pi−1

)N∗

i −1 ∏

j /∈{i,i−1}

(j!pj)
N∗

j+1

=
ipi
pi−1

∞
∏

j=0

(j!pj)
N∗

j+1 .

()

The infinite product in the last line is the same for all u, so we need only maximise
the ratio Ri. Considering the constraint that there must be a node of degree i in
Fn, and the fact that there could be multiple degrees that maximise the required
ratio (see the limit of d-ary trees as d → ∞ in the following section), there are
two cases for the probability of success of this MLE.

If M = ∞, then there exists i ≥ 1 such that pi−1 = 0, pi 6= 0, and there
is some u ∈ Fn with deg∗(u) = i. Suppose, towards a contradiction, that this u
were not the root. Then there must be some other node v 6= u that is the root,
and the v-tree degree of u would be degv(u) = deg∗(u) − 1 = i − 1. But this
is impossible since pi−1 = 0, so u must be the root. It is the only node in the
candidate set Ω and our strategy determines the root correctly with probability
P{C | Fn} = 1. If, on the other hand,M <∞, then since the probability of any
node of degree i being the root is proportional to Ri, normalising over all nodes
in the free tree Fn, we obtain

P{C | Fn} =M
/

∑

v∈Fn

Rdeg∗(v). ()

This is exactly the strategy specified in the theorem statement.

2.4. Applications to d-ary and Cayley trees

Theorem 2.1 can be applied to any family of trees that arises as a special case of
conditional Galton–Watson trees. Without any further machinery, we are now
able to give an MLE for conditional Galton–Watson trees of certain offspring
distributions. Recall the computation that we performed on 4-node Catalan trees
in the introduction to this chapter. We were able to show that the best strategy
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to guess the root was to choose a random endpoint, which would be successful
with probability 1/3. It may come as a surprise that this MLE generalises to
d-ary trees of any size.

Recall that we can generate an n-node d-ary tree uniformly at random by
generating a conditional Galton–Watson tree with a Binomial(d, 1/d) offspring
distribution. Here we have

pi =

(

d

i

)(

1

d

)i(
d− 1

d

)d−i

for every i ∈ {0, . . . , d}, whence

Ri =
ipi
pi−1

= i

(

d

i

)(

d

i− 1

)−1
1

d
· d

d− 1
=

d− i + 1

d− 1
. ()

So, for any free tree Fn, the probability of a given node u of degree deg∗(u) = i
being the root is

Ri

/

∑

v

Rdeg∗(v) =
d− i + 1

∑

v

(

d− deg∗(v) + 1
) =

d− i + 1

nd− (2n− 2) + n
=

d− i + 1

(d− 1)n + 2
.

()
Following the MLE strategy, we pick uniformly at random out of the nodes in
the free tree with degree i = 1 (of which at least one is guaranteed to exist).
Note that this expression is independent of the shape of the free tree Fn, so the
probability of success of the MLE is

P{C} = P{C | Fn} =
d

(d− 1)n + 2
. ()

From this formula, one can see that for random d-ary trees, our advantage de-
creases as d gets large. Indeed, taking the limit as d→∞, the Binomial(d, 1/d)
distributions approach a Poisson(1) distribution, with pi = (e · i!)−1. This gen-
erates the family of Cayley trees, and in this case,

ipi
pi−1

=
i · e · (i− 1)!

e · i! = 1, ()

so every node is equally likely to be the root. Here there is no better strategy
than picking uniformly from all nodes in the tree and the success probability is
1/n. Of course, this should come as no surprise since rooted Cayley trees are
sampled by first picking a free tree uniformly at random and then choosing a
root uniformly at random.

In both of these cases, P{C | Fn} only depends on n, and we thus have
P{C} = P{C | Fn}, lending to easy analysis of the MLE. This will not be true in
all cases, and in the next section we will employ some of the tools from Chapter 1
to analyse P{C} for more complex offspring distributions.
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2.5. The probability of correctness

We begin by setting up a few definitions to better deal with the two cases men-
tioned in Theorem 2.1, in the limit as n→∞. Using this notation, we reformu-
late our maximum likelihood estimator for the root, and compute its expected
probability of correctness P{C}.

Let an offspring distribution be fixed. If pi > 0 and pi−1 = 0 for some
positive integer i, we say that i is a special integer and we call a node in the free
tree with graph degree i a special node. Remember that finding a special node is
akin to hitting the jackpot for the MLE, since if i is a special integer and some
node v in a free tree has graph-degree i, then v is the root with probability 1.
We denote the set of all special integers by S. Note that i = 1 is never special,
since p0 > 0. We group all non-special integers i into equivalence classes {Jk}k≥1

according to the equivalence

i ∼ j if and only if
ipi
pi−1

=
jpj
pj−1

. ()

As before, we let Ri = ipi/pi−1 but for convenience, we will allow the notation
RJk

, which equals Ri for any i ∈ Jk. Lastly, we let NJk
denote the number

of nodes in the tree whose graph-degree belongs in the equivalence class Jk;
recalling that N∗

i is the number of nodes with graph-degree i, we have

NJk
=
∑

i∈Jk

N∗
i . ()

The maximum likelihood estimator. With these new definitions, we can
formally redescribe the MLE and the probability of correctness. Given a free tree
Fn of size n corresponding to a Galton–Watson tree with offspring distribution
pi, we guess the root as follows.

i) Let Sn denote the event that there exists a special node in a given free tree
Fn. If Sn occurs, then select this special node. In this case, P{C | Fn}1Sn =
1Sn .

ii) Otherwise, let Sc
n denote the complement of Sn which occurs if there are

either no special integers in the distribution or no nodes with the corre-
sponding degrees in the free tree. If this case arises, select a node uniformly
at random from the class Jλ, where

λ = arg maxk/∈S{RJk
: NJk

> 0}. ()

This maximum is well-defined, since there are at most n nonempty equiva-
lence classes. In this case,

P{C | Fn}1Sc
n

=
Rλ

∑

k NJk
RJk

1Sc
n
. ()

Distributions without special integers. We first consider the well-behaved
(and more common) case in which there exist no special integers in the Galton–
Watson distribution pi. The following theorem will use the notion of Kesten’s
limit tree described in the first chapter.
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Theorem 2.2. Given a random free tree of size n corresponding to a Galton–
Watson tree with offspring distribution pi with 0 < σ2 <∞ and supi≥1 pi/pi−1 <
∞. Then the probability of the MLE being correct satisfies

lim
n→∞

n ·P{C} = sup
i≥1

ipi
pi−1

. ()

Note that this could be infinity.

Proof. Let λ indicate the equivalence class chosen by the MLE, as described
above. First, we prove the upper bound. We have

P{C} = E
{

P{C | Fn}
}

= E

{

Rλ
∑

k NJk
RJk

}

≤ sup
i≥1

Ri E

{

1
∑

k NJk
RJk

}

, ()

where we note that
∑

k NJk
RJk

=
∑

v Rdeg∗(v) corresponds, up to a O(1) error,
to the random variable Wn from Lemma 1.7. That lemma in this case gives us

E{n/Wn | |T | = n} → 1, ()

since here γ = 1. We thus conclude that

lim sup
n→∞

nP{C} ≤ sup
i≥1

Ri. ()

Before moving to the lower bound, let us first show that for any degree i ≥ 1
such that pi > 0,

P{N∗
i = 0} → 0 ()

as n→∞.
Note that by Lemma 1.4, for any conditional Galton–Watson tree corre-

sponding to the free tree of size n rooted at a node u, for all i, Ni/npi → 1 in
probability. Furthermore, since we assumed that our distribution has no special
integers, for any degree i such that pi > 0, we also have pi−1 > 0. This yields,
for any i ≥ 1,

P{N∗
i = 0} = P{N∗

i = 0, deg∗(u) 6∈ {i, i− 1}}
+ P{N∗

i = 0, deg∗(u) = i− 1}+ P{N∗
i = 0, deg∗(u) = i}

= P{Nu
i−1 = 0 | deg∗(u) /∈ {i, i− 1}}P{deg∗(u) 6∈ {i, i− 1}}

+ P{Nu
i−1 − 1 = 0 | deg∗(u) = i− 1}P{deg∗(u) = i− 1},

()
which goes to 0. This follows from the fact that, as n gets large and the condi-
tional Galton–Watson tree converges locally to Kesten’s limit tree, P{deg∗(u) =
i} = ipi + o(1). Note that in the above argument, the random variables N∗

i ,
Nu

i and deg∗(u) all depend on n, but we avoid double-indexing for brevity of
notation.
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For the lower bound, we must consider two cases. We shall declare the
situation in which the supremum

∑

i≥1 Ri is finite to be case (i), and the com-
plementary case, in which it is infinite, to be case (ii). In case (i), let ǫ > 0.
There exists some j ≥ 1 with pj > 0 such that Rj ≥ (1 − ǫ)supi≥1 Ri. We
define R = Rj . In case (ii), let R ∈ R be an arbitrarily large value. We have
supi≥1 Ri = ∞, therefore for any choice of R, there must exist some j with
pj > 0 such that Rj ≥ R.

Now, in both cases, define the set

J = {ℓ : RJℓ
≥ R}

of indices of equivalence classes with a corresponding ratio at least R. The
probability that the MLE chooses an equivalence class that is not a part of this
set is the probability that J is empty,

P{λ 6∈ J } = P
{

⋂

ℓ∈J

NJℓ
= 0
}

≤ P{N∗
j = 0}, ()

which approaches 0 as n → ∞. We can thus bound the probability of success
from below by

P{C} = E
{

P{C | Fn}
}

≥ E

{

1[λ∈J ]
RJλ

∑

k NJk
RJk

}

≥ R

n(1 + ǫ)
E

{

1[λ∈J ] 1
[

∑

k
NJk

RJk
≤n(1+ǫ)

]

}

≥ R

n(1 + ǫ)

(

1−P{λ 6∈ J } −P
{

∑

k

NJk
RJk

> n(1 + ǫ)
}

)

.

()

As n → ∞, we have that P{λ 6∈ J } → 0 and, again noting that
∑

k NJk
RJk

is
within O(1) of the random variable Wn =

∑

v Rdeg∗(v) defined in Lemma 1.7,
we also have P{∑k NJk

RJk
/n > 1 + ǫ} → 0. Thus, in both cases (i) and (ii),

the sum of terms in the parentheses approaches 1 as n→∞.
In case (i), we had R ≥ (1− ǫ) supi≥1 Ri. Thus, since ǫ was arbitrary,

lim inf
n→∞

nP{C} sup
i≥1

Ri, ()

and we have equality in the limit.
In case (ii),

lim inf
n→∞

nP{C} ≥ R ()

for any arbitrarily large choice of R. We thus have

lim
n→∞

nP{C} =∞ = sup
i≥1

Ri, ()
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completing case (ii).

This theorem applies to any distribution for which if there is a positive
integer i without any probability mass, then all integers j ≥ i have pj = 0 as
well. Most of the important examples we consider satisfy this condition. We
claimed earlier that in many cases, the probability of correctness is c/n in the
limit for some constant c ≥ 1; indeed, Theorem 2.2 has shown that if there are
no special nodes, then c = supi≥1 Ri (when this is finite). In fact, since the
only valid offspring distribution with mean 1 and pi/pi−1 = 1/i for all i ≥ 1 is
the Poisson(1) distribution, the only case where c = 1 is the family of Cayley
trees, which we treated in Section 2.4. In most other cases, the MLE does better,
asymptotically speaking, than choosing uniformly at random.

Although the limit of nP{C} may be infinite, the following lemma shows
that nP{C} is always o(n) if no special integer exists. It will also apply to
distributions containing special integers. We once again let Sn denote the event
that there exists a special node in a given free tree Fn, and let Sc

n denote the
complement of this event.

Lemma 2.3. Let Fn be a random free tree of size n corresponding to a critical
conditional Galton–Watson tree with offspring distribution pi. Let S be the set
of special integers of this distribution. If 0 < σ2 < ∞, supi≥1,i 6∈S pi/pi−1 < ∞,
then

lim
n→∞

P{C ∩ Sc
n} = 0. ()

Note that if there are no special integers in the distribution, this is exactly P{C}.
Proof. For a conditional Galton–Watson tree of size n, recall the random variable
Mn = max1≤i≤n ξi that we defined in Lemma 1.6 to describe the maximum
degree. Next, we define κ = supi≥1,i 6∈S pi/pi−1 <∞. Letting λ 6∈ S be the class
chosen by the MLE, the best ratio can be bounded by

Rλ ≤ κ(Mn + 1) ≤ 2κMn. ()

As for the sum of ratios over all nodes in the free tree, note that given the event
Sc
n and letting the event Wn be as defined in Section 1.4, we have

∑

k

NJk
RJk

= Wn +
DpD
pD−1

− (D + 1)pD+1

pD
, ()

where D is the degree of the root of the tree. Then, since pD+1/pD ≤ κ,
∑

k

NJk
RJk
≥Wn − (D + 1)κ. ()

Let En be the event that Wn ≥ 2κ
√
n and D + 1 ≤ √n. Observe that

P{Ec
n} ≤ P

{

Wn < 2κ
√
n
}

+ P
{

D + 1 ≥ √n
}

≤ 4κ2nE
{

(1/Wn)2
}

+
E{D + 1}√

n

= O

(

1

n

)

+
σ2 + 2 + o(1)√

n
,

()
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where we used the fact that E
{

1/(Wn)2 | |T | = n
}

= O(1/n2) by Lemma 1.7,
and that E{D} = σ2 + 1 for the Kesten tree, to which the conditional Galton–
Watson tree locally converges. When En holds, we have

∑

k NkRK ≥ Wn −
κ
√
n ≥Wn/2.
By Lemma 1.7, Wn/γn → 1 in probability given |T | = n, and E

{

γn/Wn |
|T | = n

}

→ 1 as n tends to infinity. The probability of correctness of the MLE

can thus be bounded by

P{C ∩ Sc
n} ≤ P{C ∩ Sc

n ∩ En}+ P{Ec
n} = P{C ∩ Sc

n ∩ En}+ o(1)

= EFn

{

P{C | Fn}1Sc
n∩En

}

+ o(1)

= E

{

Rλ
∑

k NJk
Rk

1Sc
n∩Cn

}

+ o(1)

≤ E

{

2κMn

Wn/2

∣

∣

∣
|T | = n

}

+ o(1)

≤ 4κ
√

E {M2
n | |T | = n}E

{

1/Wn
2 | |T | = n

}

+ o(1).

()

To bound E
{

M2
n | |T | = n

}

, let A once again denote the event that
∑n

i=1 ξi =
n− 1. We have

E
{

M2
n | |T | = n

}

=
E
{

M2
n 1A

}

P{A} ≤ n2 P{Mn ≥ n7/8}+ n7/4 P{A}
P{A}

≤ Θ
(

n5/2
)

P{Mn ≥ n7/8}+ n7/4

()

and proceed by applying the union bound to obtain

E
{

M2
n | |T | = n

}

≤ nΘ
(

n5/2
)

∑

i≥n7/8

pi + n7/4

≤ Θ
(

n7/2
)

∑

i≥1

i2pi
n7/4

+ n7/4

= Θ
(

n7/4
)

,

()

where the last equality follows from the fact that σ2 < ∞. Substituting every-
thing into (), we have

P{C ∩ Sc
n} = 2κ

√

O
(

n7/4
)

O
(

1/n2
)

= O

(

1

n1/8

)

. ()

Distributions with special integers. We can now deal with the situation in
which the distribution contains one or more special integers. It is clear that the
MLE should do no worse here than in the non-special case, since there is now
the possibility of stumbling upon a node that must be the root.
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Theorem 2.4. Fix a random free tree Fn of size n corresponding to a Galton–
Watson tree with offspring distribution pi. Let S denote the set of special integers
and suppose that S 6= ∅, 0 < σ2 <∞, and supi 6∈S pi/pi−1 <∞. The probability
of the MLE being correct satisfies

lim
n→∞

P{C} =
∑

i∈S

ipi + o(1). ()

Proof. The special integers i ∈ S satisfy pi 6= 0 and pi−1 = 0. Recall from case
(i) of Theorem 2.2 that if there exists a node in the free tree with some special
degree i ∈ S, then there can only be one such node:

∑

i∈S N∗
i ≤ 1. Thus we can

split P{C} into two cases: Let Sn and Sc
n be defined as in the previous lemma.

Then
P{C} = E

{

P{C | Fn}
}

= E
{

P{C | Fn}1Sn

}

+ P{C 1Sc
n
}

()

The first term here is simply P{Sn}, since the MLE satisfies P{C | Fn}1Sn =
1Sn . As stated in the proof of Theorem 2.2, a conditional Galton–Watson tree
converges locally to Kesten’s limit tree as n → ∞. Thus, the existence of a
u ∈ Fn with deg∗(u) ∈ S is the event that a random conditional Galton–Watson
tree has root of degree i ∈ S, which occurs with probability

∑

i∈S ipi + o(1).
Then, noting that P{C ∩ Sc

n} = o(1) by Lemma 2.3, we have

P{C} =
∑

i∈S

ipi + o(1). ()

Comparing this result with Theorem 2.2, we see that the MLE fares a lot
better when there are special integers in the distribution. When there are no
special integers, the product nP{C} approaches supi≥1 Ri (and in many cases
this supremum is a constant), but we have now shown that the presence of special
integers causes P{C} itself to approach a nonzero constant.

2.6. Further examples

We are now able to calculate the correctness of the MLE for Galton–Watson
trees with much more general offspring distributions. We hope that the examples
below will demonstrate the simplicity of our general approach to deriving and
analyzing the MLE. A summary of these examples appears in Table 1.

Full binary trees. This is an example of a distribution with a special integer.
In a full binary tree, a node either has two children or none, so we have p0 =
p2 = 1/2 and 2 is a special integer. If there is only one node, then it is certainly
the root. Otherwise, the root has graph-degree 2. As asserted in the previous
section, there can only be one node in the free tree with graph-degree 2. In
other words, for n ≥ 2, we are guaranteed to be in case (i) of the MLE and we
can choose the root with probability 1. This argument generalises to all Flajolet
t-ary trees for t ≥ 2.
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Motzkin trees. These are also known as unary-binary trees, because every
node can have either one or two children. Unlike a Catalan tree, a node can
have one child in only one way, so these trees arise by the probability distribution
p0 = p1 = p2 = 1/3. When the tree has n ≥ 2 nodes, the root has either degree
1 or 2, and we have

Ri =
ipi
pi−1

= i ()

for i = 1, 2. The best strategy is to choose uniformly among all nodes with graph-
degree 2, unless there are none, in which case we choose a leaf. By Theorem 2.2,
we conclude that nP{C} approaches 2 as n gets large, so P{C} ∼ 2/n.

Planted plane trees. Also called rooted ordered trees, this is the family of trees
that can be embedded in the plane in a unique way; reordering the subtrees of
a given node produces a different tree even if these subtrees are visually indis-
tinguishable. Random planted plane trees correspond to conditional Galton–
Watson trees with a Geometric(1/2) offspring distribution. Thus pi = 1/2i+1

for every i and we have

Ri

/

∑

v

Rdeg∗(v) =
i/2

∑

v deg∗(v)/2
=

i

2(n− 1)
. ()

This is the probability that a node with degree i is the root. The optimal strategy
here is therefore to pick uniformly at random among the nodes of highest degree.

The maximal degree Mn of Tn is a random variable, but we were able to
give upper and lower bounds in Lemma 1.6. For an upper bound, we have

P{Mn ≥ x} ≤
(

1 + o(1)
)

nP{ξ ≥ x} ∼ n/2x ()

and this tends to 0 if x = log2 n+ω(1). (The small-omega notation ω(1) denotes
a term an such that an → ∞ as n → ∞.) Likewise, we can derive the lower
bound

P{Mn ≤ x} ≤
(

β + o(1)
)

exp
(

−nP{ξ ≥ x}
)

∼ β exp(−n/2x+1) ()

for the constant β given by Lemma 1.6 and this goes to 0 provided that x =
log2 n− ω(1). In other words,

lim
n→∞

P{Mn ≥ log2 n + ω(1) | |T | = n} = 0

and
lim
n→∞

P{Mn ≤ log2 n− ω(1) | |T | = n} = 0,

i.e., Mn/ log2 n→ 1 in probability. This means that for a planted plane tree,

P{C} =
E{Mn}
2(n− 1)

∼ log2 n

2n
. ()
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Table 1

THE PROBABILITY OF CORRECTNESS OF THE MLE

FOR SOME FAMILIES OF TREES

Family Distribution MLE P{C}

d-ary Binomial(d, 1/d) Leaf
k

(k − 1)n+ 2

Cayley Poisson(1) Choose uniformly 1/n

Full binary Uniform{0, 2} Degree 2 1

Planted plane Geometric(1/2) Maximize degree
E{Mn}
2(n− 1)

∼ log2 n

2n

Motzkin Uniform{0, 1, 2} Degree 2
2 + o(1)

n

*Large-tailed distributions. Assume that Ri is strictly increasing as a function
of i and that pi/pi−1 → 1 as i→∞. For example, we may consider distributions
with a polynomial tail

pi =
θ

(i + 1)α
, ()

for i ≥ 1 and α > 3. The bound on α ensures that σ2 < ∞. Noting that
N∗

i /n→ pi−1, we obtain

∞
∑

i=1

N∗
i Ri

n
→

∞
∑

i=1

pi−1
ipi
pi−1

= 1 ()

in probability, and thus

∣

∣

∣

∣

P{C | Fn} −
Mn

n

∣

∣

∣

∣

≤ f(Mn, n) ()

where f(Mn, n)/(Mn/n)→ 0 in probability as n→∞. Thus we have, in general,

P{C} ∼ E{Mn}
n

. ()

For pi = θ/(i + 1)α, we that E{Mn} = Θ(n1/(α−1)) and so our probability of
correctness is Θ(n−(α−2)/(α−1)); varying α produces distributions with a whole
range of correctness probabilities.



CHAPTER THREE

LEAF MULTIPLICITY

3.1. Introduction

Equivalence between two distinct mathematical objects is a far-reaching con-
cept in mathematics. When two structures are similar, one may define a relation
under which they are regarded as one and the same. The term “multiplicity”
is often used to indicate the extent to which an object is, in some sense, not
structurally unique (or how often it is repeated in a suitably-defined multiset).
Towards a concept of the multiplicity of a node in a tree, consider the small
example depicted in Fig. 3.1.

u

v

x y

w

z

Fig. 3.1. A rooted tree, in which the pair x and y are similar, but x and z are not.

Definitions and notation. Consider a tree T rooted at a node u. For a node
v in the tree, we let Tv denote the subtree rooted at v. Let v and w be nodes in
the tree and let v = v1, v2, . . . , vn = u and w = w1, w2, . . . , wm = u be the paths
from v and w, respectively, to the root. We say that v and w are identical and
write v ≡ w if the paths have the same length and Tvj and Twj are isomorphic
as rooted ordered trees for 1 ≤ j ≤ n.

It is clear that ≡ defines an equivalence relation on the set of nodes in the
tree, so we may now define the multiplicity σ(v) of a node v to be the size of
the equivalence class [v] under the relation. For example, in Fig. 3.1, the nodes
x and y each have multiplicity 2 and z has multiplicity 1. The leaf multiplicity
(or simply multiplicity, when no confusion can arise) S(T ) of a rooted tree T
is the maximum value of σ(v), taken over all nodes v of T . The name “leaf
multiplicity” is motivated by the fact that the function σ increases monotonically
on any path from the root, so that S(T ) remains the same when the maximum
is only computed over the set of leaves of T .

Note that ≡ is not the only structural equivalence relation one can define
on the set of nodes in a tree, and thus σ is only one of many possible notions
of leaf multiplicity. Towards the end of this chapter, we will explore an alter-
nate definition µ of multiplicity in a rooted tree that extends to the notion of

28
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multiplicity µF that we saw in Chapter 2. We will then discuss the relationship
between σ, µ, and µF.

Rényi entropy. It will be convenient to simplify our notation with some infor-
mation-theoretic definitions. Letting pi = P{ξ = i}, for α > 1 we define the
Rényi entropy of order α [46] (see also [32]) to be the value

Hα(ξ) =
1

α− 1
log2

1
∑

i≥0 pi
α
. ()

As α→ 1, this approaches the binary (Shannon) entropy [48]

H(ξ) =
∑

i≥0

pi log2

1

pi
.

Since ξ will be fixed throughout the chapter, for brevity we will let Hα = Hα(ξ)
and H = H(ξ).

Fix an offspring distribution ξ with mean 1 and nonzero finite variance; let
Tn be a conditional Galton–Watson tree of size n with this offspring distribution.
The leaf multiplicity S(Tn) of this tree is a random variable, and will be denoted
by Sn (this should not be confused with the event Sn from Chapter 2. The
main result of this chapter gives bounds on Sn that are obeyed asymptotically
in probability.

Theorem 3.1. Let ξ be an offspring distribution with E{ξ} = 1 and V{ξ} ∈
(0,∞). If Sn is the multiplicity of a conditional Galton–Watson tree of size n
with offspring distribution ξ, then letting

γ = max
k≥2

p0
kpk

k/(k−1), ()

we have for all ǫ > 0,

P

{

Sn ≥ (1− ǫ)
log2 n

log2(1/γ)

}

→ 1

as n → ∞, and under the further assumption that E{2ξ} < ∞, we have the
upper bound

P

{

Sn ≤ (1 + ǫ)
2 log2 n

H2

}

→ 1

as n→∞, where H2 is the Rényi entropy of order 2 of ξ.

This theorem will be proved as two separate lemmas in the next section.

3.2. Asymptotics of the leaf multiplicity

In this section we derive asymptotic upper and lower bounds on Sn. Before we
begin, observe that if pmax = maxi≥0 pi and 1 < α < β < ∞, we have the
inequalities

e−H ≤
(

∑

i≥0

pi
α
)1/(α−1)

≤
(

∑

i≥0

pi
β
)1/(β−1)

≤ pmax ()
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and

pmax ≤
(

∑

i≥0

pi
β
)1/β

≤
(

∑

i≥0

pi
α
)1/α

≤ 1. ()

Defining H∞ = log2(1/pmax), we have the equivalent chain of inequalities

H ≥ Hα ≥ Hβ ≥ H∞ ≥
β − 1

β
Hβ ≥

α− 1

α
Hα ≥ 0. ()

Moreover, because we have assumed that V{ξ} 6= 0, we have the strict inequality

(

∑

i≥0

pi
k
)1/k

<
(

∑

i≥0

pi
2
)1/2

()

for all k > 2.
First we prove the upper bound for Sn.

Lemma 3.2. Let ξ be an offspring distribution with mean 1 and nonzero finite
variance σ2. Suppose further that E{2ξ} is finite. If Sn is the multiplicity of a
conditional Galton–Watson tree of size n with offspring distribution ξ, then

P{Sn > (1 + ǫ)2 log2 n/H2} → 0 ()

for all ǫ > 0, where H2 is the Rényi entropy of order 2 of the random variable ξ.

Proof. For 1 ≤ i ≤ n, let ξi denote the degree of the ith node in preorder in the
tree Tn. For all 1 ≤ t < n, the partial sum

∑t
i=1 ξi > t− 1 and

∑n
i=1 ξi = n− 1.

We will concentrate on the least common ancestor of the nodes in the largest
equivalence class of Tn. This node, call it w, has the property that the nodes in
the equivalence class belong to k ≥ 2 different subtrees rooted at the children of
w. The node w has (random) degree D, which we will deal with by summing
over all possible degrees d. Let Awk denote the collection of all subsets of size
k of the children of w (naturally, this collection is empty if w has fewer than
k children). For x > 0, a node w, integers 2 ≤ k ≤ d, and a set A ∈ Awk,
we let E(x,w, k,A) be the event that all the nodes in A are identical and their
subtree sizes are at least x/k. Now for integers s ≥ x/k, we let E′(x, k, d, s, A)
be the event that a uniformly random node w of the tree Tn has degree d and
the leftmost k children of w are identical, with subtrees of size s. We have, by
the union bound,

P{Sn ≥ x} ≤ P

{

⋃

w∈Tn

⋃

k≥2

⋃

A∈Awk

E(x,w, k,A)

}

≤ n
∑

k≥2

∑

d≥k

(

d

k

)

∑

s≥x/k

P
{

E′(x, k, d, s, A)
}

.

()

Supposing that w is the jth node in preorder, E′(x, k, d, s, A) is the event that
ξj = d, (ξj+1, . . . , ξj+s) forms a tree, and (ξj+rs+1,...,j+rs+s) = (ξj+1, . . . , ξj+s)
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for all 1 ≤ r < k. Let us say that an integer j is “good” if these conditions
hold when addition on the indices is done modulo n. Clearly, there are more
good j than j satisfying the above conditions. Let G be the event that an index
j chosen uniformly at random from {1, . . . , n} is “good”; let B be the event
that (ξ2, . . . , ξs) forms a tree and (ξrs+2, . . . , ξ(r+1)s+1) = (ξj+1, . . . , ξj+s) for all
1 ≤ r < k. By the cycle lemma,

P
{

G | (ξ1, . . . , ξn) forms a tree
}

= P
{

G
∣

∣

∣

n
∑

i=1

ξi = n− 1
}

=
P
{

ξ1 = d, B,
∑n

i=1 ξi = n− 1
}

P
{
∑n

i=1 ξi = n− 1
}

=
P
{

ξ1 = d, B,
∑n

i=⌊1+ks⌋+1 ξi = (n− 1)− d− k(s− 1)
}

P
{
∑n

i=1 ξi = n− 1
} ,

so letting

R =
P
{
∑n−(1−ks)

i=1 ξi =
(

n− (1− ks)− 1
)

+ (k + 1− d)
}

P{∑n
i=1 ξi = n− 1} ,

we have

P
{

G | (ξ1, . . . , ξn) forms a tree
}

= pd P{B}R. ()

Letting λ = gcd{i : i ≥ 1, pi > 0}, Kolchin’s theorem states that uniformly in y,

P

{ n
∑

i=1

ξi = n− y

}

=

{

λ/
(√

2πnσ2
)

e−y2/2nσ2

+ o
(

1/
√
n
)

, if n mod λ = 0;
0, if n mod λ 6= 0.

()
As the o(1) term does not depend on y, we find that

R =

√

n− 1

n− (1− ks)− 1 + (k + 1− d)
exp

(

− (1− ks + d− k)2

2
(

n− (1− ks + d− k)
)σ2

)

+o(1),

where the o(1) term depends only on n. Assuming that ks + d ≤ n/2, we have
R ≤

√
2 + o(1). Hence

P
{

G | (ξ1, . . . , ξn) forms a tree
}

≤
(
√

2 + o(1)
)

pd P{B} ()

whenever ks + d ≤ n/2. We now compute a bound on P{B}. We have

P{B | ξ2, . . . , ξ1+s} = (pξ2 · · · pξ1+s)k−1
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and therefore, by independence of the ξi,

P{B} = E
{

(pξ2 · · · pξ1+s
)k−1 1[(ξ2,...,ξ1+s) forms a tree]

}

≤
1+s
∏

i=2

E
{

(pξi)
k−1
}

=
(

∑

i≥0

pi
k
)s

.
()

We can now combine all of these bounds. Substituting everything into (), we
have

P{Sn ≥ x} ≤ n
∑

k≥2

∑

d≥k

(

d

k

)

∑

s≥x/k

(
√

2 + o(1)
)

pd

(

∑

i≥0

pi
k
)s

≤
(
√

2 + o(1)
)

n
∑

k≥2

∑

d≥k

pd

(

d

k

)

(

∑

i≥0

pi
k
)x/k 1

1−∑i≥0 pi
k
.

Since the inequality () was strict, there exists 0 < θ < 1 such that

P{Sn ≥ x} ≤
√

2 + o(1)

1−∑i≥0 pi
2

(

n
∑

d≥2

pd

(

d

2

)

(

∑

i≥0

pi
2
)x/2

+ n
∑

k≥3

∑

d≥k

pd

(

d

k

)

(

∑

i≥0

pi
2
)x/2

θx
)

≤
√

2 + o(1)

1−∑i≥0 p1
2
n(σ2 + 1)

(

∑

i≥0

pi
2
)x/2

+ n
(

∑

i≥0

pi
2
)x/2

θx
∑

k≥3

∑

d≤k

pd

(

d

k

)

.

()

Since
∑

d≥2

pd

d
∑

k=3

(

d

k

)

≤
∑

d≥3

pd2d ≤ E{2ξ},

we have

P{Sn ≥ x} ≤ n

√
2(σ2 + 1)

1−∑i≥0 pi
2

(

∑

i≥0

pi
2
)x/2

(

1 + o(1)
)

, ()

provided that E{2ξ} <∞. Setting

x = (1 + ǫ)
2 log2 n

log2

(

1/
∑

i≥0 pi
2
) = (1 + ǫ)

2 log2 n

H2
,

we find that P{Sn ≥ x} → 0 as n→∞.

The next lemma presents a lower bound for Sn.
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L

k

Fig. 3.2. The construction in the proof of Lemma 3.3, with k = L = 3.

Lemma 3.3. Let ξ be an offspring distribution with mean 1 and nonzero finite
variance σ2. If Sn is the multiplicity of a conditional Galton–Watson tree of size
n with offspring distribution ξ, then

P

{

Sn < (1− ǫ)
log2 n

log2(1/γ)

}

→ 0 ()

for all 0 < ǫ < 1, where γ = maxk≥2 p0
kpk

k/(k−1).

Proof. Consider a complete k-ary tree of height L. This tree has kL leaves
and 1 + k + · · · + kL−1 = (kL − 1)/(k − 1) internal nodes, all of degree k. The
probability that an unconditional Galton–Watson tree takes this shape is

p0
kL

pk
(kL−1)/(k−1);

call this probability q. For any real number x, the statement Sn < x implies that
no node in the tree can have the given k-ary tree as a subtree for any kL ≥ x,
as the multiplicity of the k-ary tree is kL. Fix k ≥ 2 for now, let L be the first
integer for which k ≥ x, and let y = kL. Observe that y ≤ kx. Denote the size
of the k-ary tree by z = y + (y − 1)/(k − 1).

We now consider the indices 1, 1 + z, 1 + 2z, 1 + 3z, . . . in {1, . . . , n− z}. Let
Yi be the event (and Yi

c its complement) that (ξi, . . . , ξi+z−1) defines precisely
the k-ary tree, where i is in the set of indices defined above, which has size
⌊(n− z)/z⌋. Note that

P{Sn < x} ≤ P{Sn < y} = P

{n−z
⋂

i=1

Yi
c
∣

∣

∣
(ξ1, . . . , ξn) defines a tree

}

.

By the cycle lemma, the probability that (ξ1, . . . , ξn) defines a tree is Θ(n3/2),
so

P{Sn < x} ≤ Θ(n3/2)

{n−z
⋂

i=1

Yi
c

}

= Θ(n3/2)P{Yi
c}⌊(n−z)/z⌋

= Θ(n3/2)(1− q)⌊(n−z)/z⌋
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≤ Θ(n3/2) exp

(

−
⌊

n− z

z

⌋

p0
ypk

(y−1)/(k−1)

)

()

≤ Θ(n3/2) exp

(

−
⌊

n− z

z

⌋

p0
kxpk

(kx−1)/(k−1)

)

≤ Θ(n3/2) exp

(

−Ω(1)

⌊

n− z

z

⌋

(

p0
kpk

(k−1)/(k−1)
)x
)

≤ Θ(n3/2) exp

(

−Ω(1)

⌊

n− z

z

⌋

γx

)

.

Substituting (1 − ǫ) log2 n/ log2(1/γ) for x, and noting that z = Θ(log n), we
observe that this bound tends to 0.

3.3. The maximal leaf-degree

Let Tn be a random critical Galton–Watson tree of size n. We let ξu be the
degree of the node u and let λu be the number of children of u that are leaves in
Tn, i.e., the leaf-degree of u. We denote by Ln the random variable maxu∈Tn λu;
it is clear that the multiplicity Sn satisfies Mn ≥ Ln. The next lemma shows
that when the tail of the offspring distribution ξ decays at a rate slower than
exponential, the ratio Ln/ log n → ∞ in probability. So while our condition in
the upper bound that E{2ξ} be finite might have seemed somewhat artificial at
first glance, we essentially cannot do without it.

Theorem 3.4. Let E{ξ} = 1, V{ξ} = σ2 ∈ (0,∞), and suppose that E{ρξ} =
∞ for every 1 < ρ <∞. Let Ln be the maximal leaf-degree in Tn, the Galton–
Watson tree induced by ξ, of size n. Then

Ln

log n
→∞

in probability along a subsequence, as n→∞.

Proof. We argue by coupling Tn with Kesten’s limit tree T∞ Let τ(Tn, k) and
τ(T∞, k) denote the truncations of Tn and T∞, respectively. We let kn be a se-
quence to be defined when the time is ripe, and we couple τ(Tn, kn) and τ(T∞, kn)
such that

P
{

τ(Tn, kn) 6= τ(T∞, kn)
}

= TV
(

τ(Tn, kn), τ(T∞, kn)
)

→ 0.

To show that Ln/ log n → ∞ in probability, it suffices to show this for L′
n, the

maximal leaf-degree among all marked nodes of τ(T∞, kn) at distance < kn from
the root. Let ζ0, ζ1, . . . , ζkn−1 be the degrees of the marked nodes in τ(T∞, kn),
indexed by their distance from the root, let λi be the leaf-degree corresponding
to ζi. Now, fix a constant c and let Ai be the event that λi ≤ c logn; we have

P{L′
n ≤ c logn} ≤ P

{kn−1
⋂

i=0

Ai

}

= P{A0}kn−1

≤ exp
(

−(kn − 1)P{λ0 > c logn}
)

.

()
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Setting kn = ⌈n1/3⌉+ 1, we have

P{L′
n ≤ c logn} ≤ exp

(

−n1/3 P{λ0 > c logn}
)

. ()

Note that λ0 ∼ Binomial(ζ0 − 1, p0), so that P{λ0 ≤ p0ζ0/2 | ζ0} ≤ 1/2 for ζ0
large enough, by the law of large numbers. Therefore, for n large enough, we
have

P{λ0 > c logn} ≥ P
{

λ0 ≥
p0ζ0

2
> c logn

}

≥ 1

2
P

{

ζ0 >
2c

p0
logn

}

. ()

To conclude the proof, we must show that n1/3 P{ζ0 > 2c log n/p0} → ∞ along
a subsequence of n. Note that if E{ρξ} =∞, then

∫∞

0
P{ρξ > x} dx =∞, and

thus

∞
∑

ℓ=1

2ℓ P

{

ξ >
ℓ

log2 ρ

}

≥
∞
∑

ℓ=1

2ℓ P{ρξ > 2ℓ} ≥
∞
∑

ℓ=1

∫ 2ℓ+1

2ℓ
P{ρξ > x} dx =∞,

and consequently, P{ξ > ℓ/ log2 ρ} ≥ ℓ−22−ℓ for infinitely many ℓ ∈ N. As

P

{

ζ >
ℓ

log2 ρ

}

≥ ℓ

log2 ρ
P

{

ξ >
ℓ

log2 ρ

}

,

we see that

P

{

ζ >
ℓ

log2 ρ

}

≥ 1

log2 ρ · ℓ2ℓ
()

for infinitely many ℓ. Setting ℓ = (2c/p0) log n log2 ρ, we have,

n1/3 P

{

ζ >
2c

p0
log n

}

≥ n1/3 · 1

22c logn log2 ρ/p0
· 1

log2 ρ · 2c logn log2 ρ/p0
()

for infinitely many n provided that

2c

p0
log 2 log2 ρ ≤

1

6
,

which is possible by making ρ > 1 small enough. Thus, for every c > 0,

lim sup
n→∞

P{L′
n > c logn} = 1,

which is what we wanted to show.

Note that if for every ρ < 1, pn > ρn for all n large enough, then Ln/ log n→
∞ in probability (instead of just along a subsequence).
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3.4. Examples

In this section we examine several important families of trees in the Galton–
Watson context, and give explicit asymptotic upper and lower bounds for the
multiplicity. In each case, the two important parameters will be

γ = max
k≥2

p0
kpk

k/(k−1) and H2 = log2

1
∑

i≥0 pi
2
.

We must also verify that E{2ξ} is finite, if the upper bound is to hold. In
particular, this latter condition always holds if ξ is bounded. A summary of this
section is displayed in Table 2.

Full binary trees. These are trees in which every node must have exactly zero
or two children, and arise from the distribution p0 = p2 = 1/2. We compute
γ = 1/16 and H2 = 1, so that

(1− ǫ)
log2 n

4
≤ Sn ≤ (1 + ǫ)2 log2 n ()

asymptotically in probability. Because the multiplicity in a full binary tree must
be a power of 2, in essence this means that there exists a sequence of integers
(an) such that

P
{

Sn ∈ {2an , 2an+1, 2an+2, 2an+3}
}

→ 1.

In other words, in general one cannot improve the ratio between the upper and
lower bounds in Theorem 3.1 to a factor of less than 8 + ǫ.

Flajolet t-ary trees. Full binary trees are a special case of a Flajolet t-ary
tree for t = 2. For general t, we have

γ = p0
tpt

t/(t−1)

=

(

1− 1

t

)t(
1

t

)t/(t−1)

= exp
(

−1 + ot(1)− log t
)

,

()

so log2(1/γ) = log2 e + log2 t + o(1) as t→∞. On the other hand,

H2 = log2

1

p02 + pt2
= log2

1

1− 2/t + 2/t2
, ()

so H2 ∼ 2 log2 e/t as t→∞. This means that as t gets large, the ratio between
the upper and lower bound grows as t log t.

Cayley trees. These trees arise from a Poisson(1) distribution, where pi =
1/(e · i!) for i ≥ 0. We verify first that

E{2ξ} =
∞
∑

i=0

2i

ei!
= e <∞,



3.4 EXAMPLES 37

Table 2

LEAF MULTIPLICITIES OF CERTAIN FAMILIES OF TREES

Family Lower bound Upper bound

Full binary

(Uniform{0, 2})
log2 n

4
2 log2 n

Flajolet t-ary

(p0 = 1− 1/t; pt = 1/t)

log2 n

log2 e+ log2 t+ ot→∞(1)
∼t→∞ t logn

Cayley

(Poisson(1))

log2 n

2 + 4 log2 e

2 log2 n

log2(e
2/(I0(2))

Catalan

(Binomial(2, 1/2))
log256 n

2 log2 n

log2(8/3)

Binomial

(Binomial(d, 1/d))

log2 n

2− log2((1− 1/d)4d−2)

2 log2 n

log2(e
2/(I0(2)) + od→∞(1)

Motzkin

(Uniform{0, 1, 2}) log81 n 2 log3 n

Planted plane

(Geometric(1/2))
log256 n —

and then work out that γ = 1/(4e4). Letting

I0(z) =
∞
∑

i=0

(i2/4)k

i! · Γ(z + 1)
=

1

π

∫ π

0

ez cos θ dθ

be the modified Bessel function of the first kind (see [1], p. 376), we find that

∞
∑

i=0

pi
2 =

1

e2

∞
∑

i=0

1

(i!)2
=

1

e2
I0(2), ()

meaning that H2 = 2 log2 e− log2

(

I0(2)
)

. Putting everything together, the lower
and upper bounds in probability for Sn are, respectively,

log2 n

2 + 4 log2 e
≈ log2 n

7.771
()

and
2 log2 n

2 log2 e− log2

(

(1/π)
∫ π

0
e2 cos θ dθ

) ≈ log2 n

0.8483
. ()

Catalan trees. When we set p0 = p2 = 1/4 and p1 = 1/2, we obtain the
family of Catalan trees. Recall that there is a one-to-one correspondence between
Catalan trees on n nodes and full binary trees on 2n+1 nodes, since one obtains
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a full binary tree from a Catalan tree by adding artificial external nodes to every
empty slot, and this procedure is reversed by removing all leaves from a full
binary tree. It is easy to see that the leaf multiplicity of a full binary tree is
exactly double the multiplicity of its corresponding Catalan tree. By plugging
in d = 2 above, the lower bound given by Lemma 3.3 is log2 n/8, which makes
sense since the correspondence with full binary trees tells us that the lower
bound on the Catalan trees should be similar to log2(2n + 1)/8. We calculate
H2 = log2(8/3) and the upper bound is 2 log2 n/ log2(8/3), so the ratio between
the upper and lower bounds is 16/ log2(8/3).

Binomial trees. Catalan trees are a special case of a d-ary tree for d ≥ 2,
corresponding to a Binomial(d, 1/d) distribution. We compute

γ = (p0p2)2 =

(

(

d− 1

d

)d

· d(d− 1)

2
· (d− 1)d−2

dd

)2

=
1

4

(

1− 1

d

)4d−2

. ()

Note that taking the limit d → ∞, the Binomial(d, 1/d) distributions approach
a Poisson(1) distribution. Thus we see from our earlier discussion on the Cayley
trees that H2 = log2

(

e2/(I0(2)
)

+ od→∞(1). This gives the respective lower and
upper bounds

log2 n

2− (4d− 2) log2(1− 1/d)
and

2 log2 n

log2

(

e2/(I0(2)
)

+ od→∞(1)
. ()

The lower bound tends to log2 n/(2 + 4 log2 e) as d → ∞, matching the lower
bound we obtained for Cayley trees above.

Motzkin trees. These trees correspond to the distribution with p0 = p1 = p2 =
1/3. We easily compute γ = 1/81 and H2 = log2 3, which yields an asymptotic
lower bound of log2 n/(log2 81) = log81 n and an asymptotic upper bound of
2 log2 n/ log2 3 = 2 log3 n. The ratio between the upper and lower bounds is 8.

Planted plane trees. These are trees with ordered children, so that each can be
embedded in the plane in a unique way. They correspond to a Geometric(1/2)
distribution, with pi = 1/2i+1 for all i. We find that γ = 1/256, so we have
the asymptotic lower bound Sn ≥ log2 n/8. Unfortunately, we have E{2ξ} =
∑

i≥0 1/2 = ∞, so Lemma 3.2 cannot be applied to give an upper bound here.
Recall from Lemma 1.6 that the maximal degree ∆n of Tn satisfies ∆n/ log2 n→
1 in probability. However, this does not imply that Sn = O(log n) in probability.

3.5. Automorphic multiplicity

The multiplicity of a tree does not have a natural extension to unrooted trees,
because whether or not two nodes are identical depends crucially on their position
in relation to a distinguished root node u. In this section we briefly investigate an
alternate notion of multiplicity that does extend nicely to free trees. It arises in
the problem of root estimation in Galton–Watson trees described in Chapter 2.
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We briefly recall some definitions. Let T be a rooted tree. By disregarding the
parent-child directions of the edges, we obtain a free tree TF. Conversely, if we
start with a free tree TF and any node u, we can define a rooting of TF at u to
be the rooted tree Tu obtained by fixing u as the root. This does not give rise to
a unique tree in general, because children of a given node may hang on the wall
in an arbitrary left-to-right order, but our new notion of multiplicity will treat
all of these possible ordered trees the same.

Let Aut(TF) be the group of all graph automorphisms of TF, that is, bi-
jections f from the set of vertices TF to itself such that for vertices u and v,
f(u) is adjacent to f(v) whenever u is adjacent to v. We can then define an
automorphism of Tu to be a graph automorphism of TF such that the root u
stays fixed. By a slight abuse of notation, we denote the set of these rooted-tree
automorphisms by Aut(Tu); formally this is the stabilizer subgroup Stab(u) of
Aut(TF). We will say that two nodes v and w in Tu are congruent and write
v ∼u w if v and w belong to the same orbit under the action of Aut(Tu). This
means that there exists an element f of Aut(Tu) such that f(v) = w. It is clear
that this gives us an equivalence relation on the set of all nodes of Tu, and the
automorphic multiplicity of a node v, denoted µ(u, v), is the size of the equiv-
alence class of v under this relation. Since any node can be mapped to itself
under an automorphism, µ(u, v) ≥ 1 for all v.

In fact, one can define the relation ∼u, and consequently the function µ,
purely in terms of the relation ≡. We have v ∼u w if and only if there exists a
permutation for every node in Tu such that applying each permutation to the
left-to-right ordering of its respective node’s children results in a tree in which
v ≡ w. The analogue of S in this setting is the automorphic (leaf) multiplicity
M(T ) of a rooted tree T . If o is the tree’s root, then M(T ) is the maximum
value of µ(o, v), taken over all nodes v in the tree.

T1 T2

Fig. 3.3. Different leaf multiplicities but the same automorphic leaf multiplicity.

Fig. 3.3 illustrates the distinction between the automorphic and non-auto-
morphic multiplicity. We have S(T1) = M(T1) = 4, since the two non-leaf
children of the root have identical (and therefore congruent) subtrees. In T2, on
the other hand, these subtrees are congruent but not identical, so that M(T2) = 4
but the non-automorphic multiplicity of T2 is only 2.

This definition is still somewhat at odds with the notion of multiplicity
that arises in the root estimation problem from Chapter 2. In that setting, one
considers all graph automorphisms of the free tree, not just ones that fix the
root. We will call the size of the orbit of a node under this larger action the
free multiplicity µF and if two nodes u and v are congruent under an arbitrary
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graph automorphism, then we write u ∼F v and say that the two nodes are
free-congruent. (The notation µF corresponds to the notation M in Chapter 2.).
We also let MF(T ) denote the free (leaf) multiplicity, the maximum value of µF

over all nodes in the free tree TF.

Fig. 3.4. A rooted tree T with M(T ) = 6 and MF(T ) = 9.

Fig. 3.4 shows the relation between the automorphic multiplicity of a rooted
tree and the free multiplicity its free-tree counterpart. Note that M(T ) ≤MF(T )
for any rooted tree T , since we have µ(u) ≤ µF(u) for every node u. We shall
spend the rest of this section showing that this inequality can more or less be
reversed. First, we need three lemmas, the latter two of which appeared in a
preliminary version of [9]. They were removed from the paper in a revision as
they were unnecessary for the root estimation problem, but they will be useful
to us here, so we have granted them a reprieve. For the next three lemmas, when
we say “multiplicity”, we mean “free multiplicity”. First, we give a new lemma,
whose proof was shown to us by J. Saks.

Lemma 3.5. If u and v are adjacent nodes in a finite free tree T , then either
µF(u) is an integer multiple of µF(v) or the other way around.

Proof. We may reduce to the case where one of u or v is a leaf. This is because if
neither is a leaf, then it is not in the orbit of any leaf by graph automorphism, so
we can remove all the leaves from the tree T without changing either of µF(u) or
µF(v). (The anxious reader may worry that µF(v) = µ(l, v) for some leaf l 6= v,
but then we also have µF(v) = µ(l′, v) where l′ is the only neighbour of l.) This
is done finitely many times since T is finite and always contains at least one leaf.

Now without loss of generality, suppose u is the leaf and v is its unique
neighbour. By the orbit-stabiliser theorem,

∣

∣Aut(T )
∣

∣ = µF(u)
∣

∣Stab(u)
∣

∣ = µF(v)
∣

∣Stab(v)
∣

∣, ()

where stabilisers are taken with respect to the group Aut(T ). Every automor-
phism fixing u must permute its neighbours, but since u only has one neighbour,
we see that Stab(u) ⊆ Stab(v). Hence, denoting the index of a subgroup H of
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G by [G : H], we have

µF(u) =
µF(v)

∣

∣Stab(v)
∣

∣

∣

∣Stab(u)
∣

∣

=
µF(v)

[

Stab(v) : Stab(u)
]
∣

∣Stab(u)
∣

∣

∣

∣Stab(u)
∣

∣

= µF(v)
[

Stab(v) : Stab(u)
]

,

()

proving the lemma.

The next lemma formalises the intuitive notation that in a free tree, the
multiplicities are in some sense smaller towards the centre of the tree.

Lemma 3.6. Let u −− v −− w be neighbouring nodes in a free tree T with
v being the middle node. Then v cannot have strict maximal free multiplicity
among the three nodes; that is, µF(v) ≤ µF(u) or µF(v) ≤ µF(w).

Proof. Suppose for contradiction that µF(v) > µF(u) and µF(v) > µF(w). Then,
for each of the pairs of neighbours u −− v and v −− w, the multiplicity of one
of the nodes must be an integer multiple of the multiplicity of the other, by the
previous lemma.

So there must be integers r, s > 1 such that

µF(v) = rµF(w) and µF(v) = sµF(u). ()

The situation is illustrated in Fig. 3.5. Since µF(v) = sµF(u), in the v-rooted
tree u must have s− 1 children, each of which is in the orbit of v and thus is the
the root of a subtree isomorphic to B. Similarly, since µF(v) = rµF(w), w must
have r − 1 child subtrees isomorphic to A.

Bs { 1

B1

Ar { 1

A1

u v w

A

B

::
:

::
:

Fig. 3.5. Three adjacent nodes and their subtrees.

We note that in order to satisfy the r, s > 1 requirements, we must have

|A| ≥ (s− 1)|B|+ 2 and |B| ≥ (r − 1)|A|+ 2, ()

where the additional +2 terms come respectively from nodes u and v (for |A|)
or v and w (for |B|). This implies that

|A| ≥ (s− 1)(r − 1)|A|+ 2s,
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which is impossible if |A| ≥ 1 and r, s > 1. The contradiction tells us that v
cannot have strict maximal multiplicity among the three nodes.

We have established that if we embed a free tree into the (x, y)-plane and
then lift the nodes up by setting each node’s z-coordinate to its multiplicity, then
the result is a convex, spidery bowl or valley. This is illustrated in Fig. 3.6.

Fig. 3.6. Darker shades of grey indicate higher multiplicities in this free tree.

On a path between any two endpoints, the multiplicities decrease monoton-
ically towards the centre of the tree before increasing monotonically towards the
endpoint. There is a central connected core of nodes of minimal multiplicity and
we are able to show that this minimal multiplicity cannot be greater than 2.

Lemma 3.7. If F = (V,E) is a finite free tree, then the node of minimal
multiplicity in F has multiplicity 1 or 2.

Proof. The proof is by contraposition. Let u ∈ V (F ) be a node of minimal
multiplicity and suppose µF(u) > 2. Let Cu be the orbit of u. There is a subtree
F ′ whose endpoints are the members of Cu; since m > 2 and the graph is
connected, there is necessarily at least one node v ∈ F ′ \Cu. By Lemma 3.6, we
have µF(v) ≤ µF(u) but by minimality of µF(u), we know that µF(v) = µF(u).
So we can repeat the argument with Cv to find that the tree is infinite (at each
step we are removing µF(u) nodes from the free tree, but the process never
terminates).

Note that this argument does not work when µF(u) = 2 because F ′ may
simply consist of two nodes connected by one edge.

Theorem 3.8. Let T be a rooted tree with n nodes; let M(T ) and MF(T ) be
the automorphic multiplicity and free multiplicity of T , respectively. We have
the inequality

MF(T ) ≤ 2M(T ),

and this bound is the best possible, in general.

Proof. Suppose first that n ≥ 3. Let v be a leaf of maximal automorphic
multiplicity in TF, and let [v] denote the set of nodes that are free-congruent
to v (so

∣

∣[v]
∣

∣ = MF(T )). By Lemma 3.7, a node s of minimal automorphic
multiplicity either has µF(s) = 1 or µF(s) = 2, and since we assumed that
n ≥ 3, we can require that s not be a leaf.
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If µF(s) = 1, then M(Ts) = MF(T ), since any automorphism of TF already
fixes s. The nodes in [v] all lie in some subtrees of s, and without loss of
generality, we may assume that they do not all lie in the same subtree, since if
s′ is the only child of s whose subtree contains nodes of [v], we can reroot the
tree Ts at s′ instead without changing the maximum automorphic multiplicity.
There are d ≥ 2 children of the root whose subtrees contain elements of [v];
each one contains an equal proportion of these nodes, so d divides MF(T ). If
we reroot the tree at any node outside these subtrees, then the automorphic
multiplicity of the tree does not change. If, on the other hand, we choose a node
in one of these subtrees, then there are still (d− 1)MF(T )/d leaves that can still
be shuffled amongst themselves, so the maximum automorphic multiplicity is
(d− 1)MF(T )/d ≥MF(T )/2.

If µF(s) = 2, there is a node s′ that is free-congruent to s, and there is
mirror symmetry in the graph. This means that there is a way to split the graph
along an edge such that the two sides have the exact same shape, one contains
s, and the other contains s′. The side containing s has MF(T )/2 members of
[v]; call this half [v]s and the other half [v]s′ . When the tree is rooted at s, we
find that M(Ts) = MF(T )/2, since any two members of [v]s can be exchanged
and any two members of [v]s′ can be exchanged (but exchanges cannot happen
between the two subtrees). And rerooting the tree at an arbitrary node, it is
clear that the automorphic multiplicity of the tree will not decrease.

When n = 1 the statement is trivial, and taking n = 2 shows that the bound
is the best possible, because if T is the tree with a root and a single (leaf) child,
then MF(T ) = 2 and M(T ) = 1.

This theorem tells us that the asymptotics of the free multiplicity are the
same as the asymptotics of the automorphic multiplicity, up to a fudge factor of 2.
Because congruence of two nodes is immediately implied by their being identical
under ≡, we have S(T ) ≤ M(T ) for all rooted trees T . Thus if Mn = M(Tn)
and Fn = MF(Tn), where Tn is a conditional Galton–Watson tree of size n, then
if γ is as defined in Lemma 3.3, in probability the lower bound

Fn ≥Mn ≥ (1− ǫ)
log2 n

log2(1/γ)
()

on the automorphic and free multiplicities holds with probability tending to 1.
A strengthening of this bound alongside a corresponding upper bound would be
a significant contribution.



CHAPTER FOUR

THE INDEPENDENCE NUMBER

4.1. Introduction

The independence number is a fundamental graph invariant that arises often
in computational complexity theory and the analysis of algorithms. In a graph
G = (V,E), a subset S ⊆ V of vertices is said to be an independent set if no two
elements of S are adjacent. The dual notion is that of a vertex cover, namely a
subset C ⊆ V such that every edge in G has an endpoint in C. The independence
number I(G) of G is defined to be the size of the largest independent set in G.
In this chapter, we concern ourselves with the case G = T , a random tree in the
Galton–Watson model. In recent years, analysis of the independence number
of trees has been carried out for various other random models. C. Banderier,
M. Kuba, and A. Panholzer studied various families of simply-generated trees [5],
and a recent paper of M. Fuchs, C. Holmgren, D. Mitsche, and R. Neininger
considers random binary search trees as well as random recursive trees [25].

Because every tree T is bipartite, the independence number I(T ) is always
at least |T |/2 (we take the larger element of the bipartition). Recall that a
vertex set S is a vertex cover of T if every edge of T intersects a vertex in S.
Letting V (T ) denote the size of a minimum-cardinality vertex cover, we have the
formula n = V (T ) + I(T ). In a tree, there always exists a maximum-cardinality
independent set that includes all of the leaves, and the following algorithm, which
will be the starting point of our discussion, uses this fact to find an independent
set of maximum size. Note that this is only one of many possible algorithms
that accomplishes this task.

Algorithm I (Independent set). Given a directed tree T , this algorithm com-
putes a maximum-cardinality independent set A of vertices.

I1. [Initialize.] Set A← ∅.
I2. [Compute leaves and parents.] Let L(T ) be the set of leaves of T , that is,

the set of vertices with out-degree 0. Let P (T ) be the set of parents of nodes
in L(T ).

I3. [Update.] Set A ← A ∪ L(T ) and T ← T \ L(T ) \ P (T ). (At this stage, T
may now be a forest.)

I4. [Loop?] If T = ∅, halt and output A; otherwise, return to step I2.

Algorithm I repeatedly peels away leaves and their parents to arrive at what
we shall call the layered independent set. We refer to L(T ) as layer 0, to P (T )
as layer 1, to L

(

T \ L(T ) \ P (T )
)

as layer 2, and so on. In this manner, each

44
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node u gets assigned a peel number ρ(u), the layer number of the set to which
it belongs. The peel number ρ(T ) of a tree T is the peel number of the root of
T . We also let m(T ) denote the maximum of the peel numbers of vertices in
T ; this quantity is twice the number of loops that Algorithm I undergoes before
termination, rounded up. Note that all the peel numbers can be computed by
postorder traversal of the tree in time O

(

|T |
)

, and then the layered independent
set is simply the collection of all nodes with even peel number.

A quantity related to the peel number is the leaf height λ(u) of a node u ∈ T .
It is the length of the path to the nearest leaf in the (fringe) subtree rooted at
u. The leaf height λ(T ) of a tree T is the maximal leaf height of any node in T .
The fact that ρ(u) = k implies that there is a leaf at depth k from the root, so
λ(u) ≤ ρ(u) for all nodes u in a tree. It is also easily seen that for any tree T ,
λ(T ) ≤ ρ(T ) ≤ m(T ). A small example is given in Fig. 4.1; note that for nodes
with few children or small subtrees, the two quantities are quite similar. One
corollary of our main results is that under certain conditions, this phenomenon
persists as n gets large, that is, the peel number and leaf height have the same
order of asymptotic growth.

0 0

1

2

3

1

0 2

1 1

0 0

ρ(u)

0 0

1

2

2

1

0 2

1 1

0 0

λ(u)

Fig. 4.1. Peel numbers (left) and leaf heights (right) of nodes.

The leaf height goes by the name protection number in the literature and has
enjoyed some recent attention. With this usage, a node whose minimal distance
from any leaf is k is called k-protected and a 2-protected node is often simply said
to be protected. In this chapter we say that a node has leaf height k, which we
believe is more illustrative than saying it is k-protected. The number of nodes
with leaf height ≥ 2 was examined by G.-S. Cheon and L. W. Shapiro for planted
plane trees, Motzkin trees, full binary trees, Catalan trees, and ternary trees [15];
by T. Mansour [43] for k-ary trees; by R. R. X. Du and and H. Prodinger
for digital search trees [20]; by H. M. Mahmoud and M. D. Ward for binary
search trees [41] and for random recursive trees [42]; and by L. Devroye and
S. Janson, who considered simply generated trees and also unified some earlier
results regarding binary search trees and random recursive trees. Nodes with
leaf height > 2 were studied in binary search trees by M. Bóna [8] and in planted
plane trees by K. Copenhaver [17]. In the setting of simply generated trees and
Pólya trees, the leaf height of the root as well as the leaf height of a node chosen
uniformly at random was studied in [27].

The main results of this chapter characterize the asymptotic behaviour of
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the independence number In = I(Tn), the maximum peel number Mn = m(Tn),
and the maximum leaf height Ln = λ(Tn) for a Galton-Watson tree Tn, which
is conditioned on having n nodes. We also include distributional properties of
closely related statistics, such as the peel number and leaf height of the root of
an unconditional Galton-Watson tree, as well as the leaf height L′

n of the root
of and the leaf height L′′

n of a node chosen uniformly at random in a conditonal
Galton–Watson tree.

4.2. Asymptotics of the independence number

We begin by studying unconditional Galton–Watson trees. Recall that the gen-
erating function f(s) of an offspring distribution ξ is the infinite series E{sξ},
which converges absolutely when 0 ≤ s ≤ 1. We can thus differentiate to obtain
f ′(s) = E{ξsξ−1}. A quantity that will play a key role in our story is q, the
unique solution in (0, 1) of q = f(1− q).

s

s

f(1− s)

0
0 q 1

1

Fig. 4.2. The parameter q satisfying q = f(1− q).

Lemma 4.1. Let ξ be an offspring distribution with 0 < E{ξ} ≤ 1 and nonzero
variance, and let f(s) = E{sξ}. The probability that the root of a Galton–
Watson tree T with this distribution belongs to the layered independent set is
q, which belongs to the interval (1/2, 1).

Proof. Note that q is the probability that all the children of the root are not
in the layered independent set. By the recursive definition of a Galton–Watson
tree, we have

q =
∑

i≥0

pi(1− q)i = f(1− q). ()

Since f(s) = E{sξ} is nondecreasing, f(1−s) is nonincreasing and s is increasing,
hence there is a unique solution to s = f(1 − s) in the compact interval [0, 1].
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Of course, q cannot be 1 since P{ξ = 0} 6= 0. The fact that f(s) > s for all
x ∈ (0, 1) implies that q = f(1− q) > 1− q, hence q > 1/2.

This lemma is essentially known (see, e.g., Banderier et al. [5]).

Examples. There is a well-known connection between certain families of trees
and conditioned Galton–Watson trees. In each of the following cases, sampling
a conditional Galton–Watson tree Tn with the given distribution is equivalent to
uniformly sampling a tree of size n from the respective tree family.

i) In Flajolet’s t-ary tree, every node is either a leaf or has t children (see [24],
p. 68). This corresponds to the distribution with p0 = 1−1/t and pt = 1/t, so
we can compute q numerically by finding the unique solution to the equation

q = 1− 1

t
+

(1− q)t

t
. ()

in the interval (1/2, 1). In the case t = 2 of full binary trees, we find that
q = 2−

√
2 ≈ 0.585786, and since the (1− q)t/t term is very small for larger

values of t, q is approximately 1− 1/t for large t.

ii) To obtain a random rooted Cayley tree, we set pi = (i!e)−1 for all i ≥ 0.
Since f(s) = es−1, we have qeq = 1, which we can invert in terms of the
Lambert W function. Concretely, we have

q = W (1) =

(
∫ ∞

−∞

dt

(et − t)2 + π2

)−1

− 1 ≈ 0.567143, ()

which is also known as the omega constant.

iii) Planted plane trees correspond to the distribution pi = 1/2i+1 for i ≥ 0.
In this case, f(s) = 1/(2 − s), yielding the equation q2 + q − 1 = 0, whose
solution in the correct range is q = 1/ϕ ≈ 0.618034. (The golden ratio
ϕ = 1.618034 is the more famous solution to this quadratic equation).

iv) Motzkin trees, also known as unary-binary trees, are trees in which every
non-leaf node has either one tree or two children. This corresponds to the
distribution p0 = p1 = p2 = 1/3 and pi = 0 for all i ≥ 3. So we have
q =

(

1 + (1− q) + (1− q)2
)

/3 and we have q = 3−
√

6 ≈ 0.550510.

v) A binomial tree of order d can be thought of as a tree in which every node
has d “slots” for its children, some of which may be filled. Thus a node
can have r children in

(

d
r

)

different ways, for 0 ≤ r ≤ d. This corresponds,
fittingly, to a binomial offspring distribution, where

pi =

(

d

i

)(

1

d

)i(

1− 1

d

)d−i

, ()

for 0 ≤ i ≤ d, and pi = 0 otherwise. For this distribution, we have f(s) =
(s/n + 1− 1/n)n, meaning that

q =

(

1− 1

d
+

1− q

d

)d

=

(

1− q

d

)d

. ()
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For large d, this tends to the omega constant. An important case is d = 2,
which produces a random Catalan tree; it can be readily computed that
q = 4− 2

√
3 ≈ 0.535898 for these trees.

The following theorem shows the link between q and the size of the largest
independent set in a conditioned Galton–Watson tree.

Theorem 4.2. Let ξ be an offspring distribution with 0 < E{ξ} ≤ 1 and
V{ξ} 6= 0, and let f(s) = E{sξ}. The independence number In = I(Tn) of a
Galton–Watson tree, conditioned on having n nodes, satisfies

In
n
→ q

in probability as n→∞, where q is the unique solution in (1/2, 1) of the equation
q = f(1− q).

Proof. For a vertex u, we let Γu denote the set of children of u and let

g(u) =

{

1, if the peel number of u is even;
0, otherwise

. ()

Note that the recursive function

G(u) = g(u) +
∑

v∈Γu

G(v) ()

is exactly the independence number of the subtree rooted at u. Since g is
bounded, we can apply a result of S. Janson ([33], Theorem 1.3) to find that
for a conditional Galton–Watson tree Tn with root u,

In
n

=
G(u)

n
→ E

{

f(T )
}

= E
{

g(u)
}

= q ()

in probability as n→∞.

Note that examples (ii), (iii), and the Catalan case agree with explicit com-
putations given in [5]. For simply generated trees, that paper, which uses singu-
larity analysis, derives the constant q in a different manner, proves the stronger
statement E

{

I(Tn)
}

= qn + O(1), and also gives a formula for the variance in
terms of the degree-weight generating function. In particular, they show there
exists a constant ν depending on the family of trees such that the variance is
νn + O(1).

4.3. Minimum-size s-path covers

This section represents a brief digression, and will not be related to our remain-
ing results, though it discusses the natural generalisation of Algorithm I and is
related to the open problem we give at the end of the chapter. As mentioned
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in the introduction, the size V (T ) of the minimal vertex cover of a tree T with
n nodes has size n − I(T ), where I(T ) is the independence number. In par-
ticular, Algorithm I outputs a minimum-cardinality vertex cover alongside the
maximum-cardinality independent set; it is the set of all nodes with odd peel
number. We now tackle a more general notion of vertex covers. For an integer
s ≥ 2, an s-path vertex cover of a rooted tree T is a subset C of vertices such
that any directed path of length s − 1 in the tree contains a vertex in C. Thus
the common-or-garden vertex cover corresponds to s = 2. (The off-by-one quirk
in the definition goes away if we measure a path not by its length, but instead
by its order, that is, the number of vertices it contains.) Note that only directed
paths are considered; so two children of the same node are not connected by a
path of length 2.

One might be tempted to generalize our earlier observations by claiming
that the set of nodes with peel number congruent to s−1 modulo s is a minimal
s-path vertex cover. This is not true! Consider a tree in which the root has two
children, and one of the children has itself one child. Then no node has peel
number equal to 2, but of course, the minimal 3-path vertex cover consists of
the root. Towards a correct generalisation, consider the fact that if in every loop
of Algorithm I, we removed all subtrees of height exactly 1, then the roots of
these removed subtrees are precisely the vertices with odd peel number. Thus
we arrive at an algorithm for computing a minimal s-path vertex cover.

Algorithm P (Compute s-path vertex cover). Given s ≥ 2, and a rooted tree
T , this algorithm computes a minimal s-path vertex cover C.

P1. [Initialize.] Set C ← ∅.
P2. [Done?] If there are no subtrees with height at least s− 1, we output C and

terminate.

P3. [Prune a subtree.] Let v be a node in T such that the subtree Tv rooted at
v has height exactly s − 1. We set C ← C ∪ {v} and set T ← T \ Tv (this
may now be a forest). Return to step P2.

Note that if the original tree had height less than s−1, the algorithm outputs
the empty set, which is a valid cover, since there are no paths of length s − 1
in the tree. The fact that this algorithm actually does output a minimum-size
vertex cover is proved in [11], and it is also remarked that the algorithm can be
made to run in O

(

|T |
)

time.
Let Vs(T ) denote the size of the minimum s-path vertex cover of a Galton–

Watson tree T . To determine this random quantity, we will have to determine
the probability that a node is added to the set C in Algorithm P. We will say
that a vertex v ∈ T is “marked” if Algorithm P adds it to the cover C. The
following lemma gives necessary and sufficient conditions for the root of a tree
to be marked.

Lemma 4.3. The root u of a tree is marked if and only if there exists a path
of length s − 1 from the root that contains no marked vertices (other than the
root).
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Proof. Suppose that the root u is marked. This means that in the final iteration
of Algorithm P, after all other marked nodes have been removed, the tree has
height s − 1. This means that some unmarked node v is at depth s − 1, and
no node is marked on the path to this node. (This happens when v is a leaf or
all children of v are marked, since if a child of v is unmarked, then we have an
unmarked path of length s in the tree and the algorithm would have to mark
some node on this path before marking the root.) Conversely, if such a path
exists, then Algorithm P will be in this state in the final iteration of the loop
and will therefore mark the root.

This observation can be used to derive a functional equation for the prob-
ability that a node in an unconditional Galton–Watson tree is marked, as the
following lemma shows.

Lemma 4.4. Let T be a Galton–Watson tree with offspring distribution ξ satis-
fying E{ξ} ≤ 1. Let f(z) = E{ξz} be the generating function of the distribution
and let

g(z, q) = 1− f
(

q + (1− q)z
)

()

The probability qs that the root of the tree is in the minimum s-path vertex
cover produced by Algorithm P satisfies

qs = g(g(· · · (g(0, qs) · · · , qs), qs), qs), ()

where the function g is iterated s− 1 times.

Proof. For 1 ≤ j < s, let Ej be the event that in an unconditional Galton–Watson
tree, there is a path of length j from the root that contains no marked vertices
(except possibly the root). Thus qs = P{Es−1}. Restating things slightly, Ej

is the probability that there exists an unmarked child v of the root in whose
subtree Ej−1 is true. If the degree of the root is i, then the probability that all

the children of the root fail to have this property is
(

qs + (1− qs)P{Ej−1}
)i

, so
for 1 < j < s,

P{Ej} =
∑

i≥0

pi
(

1−(qs+(1−qs)P{Ej−1})i
)

= 1−f
(

qs+(1−qs)P{Ej−1}
)

. ()

Note that P{E1} is simply the probability 1 − f(qs) = g(0, qs) that one of the
children of the root is unmarked, so unravelling the above equation proves the
lemma.

Note that when s = 2, qs = 1− q, where q is the solution to z = f(1− z) we
studied earlier. By a recursive computation analogous to the one we performed
for the independence number, we find that if Vs(Tn) denotes the minimum size
of an s-path vertex cover of the conditional Galton–Watson tree Tn, then as
n→∞,

Vs(Tn)

n
→ qs, ()
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in probability. The function g given by Lemma 4.4 is rather unwieldy, so we
cannot hope to find neat closed forms for the limit of Vs(Tn) like we did for
In in many special cases. However, we can, in principle, use g to numerically
approximate the s-path vertex cover number for arbitrary distributions satisfying
E{ξ} ≤ 1.

*An application to random ideals. We close this section by mentioning a
link between these results and certain notions in commutative algebra. We will
give all definitions necessary to describe the connection, but with minimal detail,
as they will not be used outside this subsection. The concepts here are treated
by most introductory commutative algebra textbooks (e.g., [22]). Let k be an
arbitrary field and let R = k[x1, x2, . . . , xn] be the polynomial ring on n variables
with coefficients in k. A squarefree monomial ideal is an ideal generated by
monomials of the form

∏

i∈S xi for some S ⊆ {1, 2, . . . , n}. Regarding a rooted
tree T as a directed graph on the vertex set {1, 2, . . . , n} with edges leading away
from the root, the path ideal Is(T ), for s ≥ 2 is the ideal generated by the set of
monomials

{

xi1xi2 · · ·xis : (i1, i2, . . . , is) is a path of length s in T
}

.

When s = 2, this is called an edge ideal.
Recall that a proper ideal p of a ring R is prime if ab ∈ p implies that a ∈ p

or b ∈ p. The Krull dimension dimR of a ring R is the supremum of lengths of
chains of primes contained in R. If I is an ideal of R, the dimension dim I of I is
defined to be the dimension of the quotient ring R/I. This definition is intended
to reflect the fact that if S is the set of all points (a1, a2, . . . , an) in n-dimensional
affine space over k such that f(a1, a2, . . . , an) = 0 for all f ∈ I, then S has the
same dimension as I. The codimension (or height) of a prime ideal p is the
supremum of lengths of chains descending from p; for instance, p = (x2, x5, x7)
has codimension 3 because we have the chain p ⊃ (x2, x5) ⊃ (x2). More generally,
the codimension of an ideal I is defined to be the minimum codimension of a
prime containing I. For a polynomial ring R over a field and any ideal I of R,
dimR = dim I + codim I.

The main connection between path ideals and s-path vertex covers of a tree
T is that the codimension of Is(T ) is exactly the minimum size of an s-path
vertex cover. To see this, note that every squarefree monomial ideal admits a
primary decomposition into an intersection of prime ideals generated by subsets
of the variables in the following manner. For every generating element that is
expressible as ab for a and b relatively prime, we can write I =

(

I+(a)
)

∩
(

I+(b)
)

;
I+(a) is the result of adding the element a to the generating set of I. This is best
illustrated by an example. Let I2(T ) = (x1x2, x1x3, x2x4, x2x5, x3x6) be the edge
ideal of a certain tree T (the reader may want to draw the tree and play along).
We can decompose I2(T ) = (x2, x3)∩(x1, x2, x6)∩(x1, x3, x4, x5)∩(x1, x4, x5, x6).
The prime ideal of minimal dimension that contains I2(T ) is (x2, x3), which
corresponds to the fact that {x2, x3} is a vertex cover of the graph. In the case
when s = 2, the maximum size of an independent set in T thus corresponds
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to the dimension of I2(T ). This does not hold for s > 2, but we still have
codim Is(T ) = Vs(T ). As an example, for the tree T from the example above,
the largest prime in the primary decomposition of I3(T ) is (x1), since every path
of length 2 meets the root x1.

There has been much recent work in determining various algebraic properties
of random monomial ideals. For example, a 2019 paper of J. A. de Loera et al.
characterised thresholds for the Krull dimension of random ideals arising from an
Erdős-Rényi-type model [39]. Although path ideals of trees have been studied,
notably in an M.Sc. thesis of J. He [30], to our knowledge no one has studied
properties of path ideals of trees picked uniformly at random from certain families
(which is equivalent to conditional Galton–Watson trees). We have shown in this
section that under such a model, one can compute the codimension and Krull
dimension of the random path ideal using only the generating function of the
Galton–Watson offspring distribution.

4.4. Distribution of the peel number

Let ri denote the probability that the root of an unconditional Galton–Watson
tree has peel number i. In this section, we shall compute the distribution (ri)i≥0.
It will also be convenient to set ri = 0 when i is negative. We will establish the
notation

r+i =
∑

j≥i

rj and r−i =
i
∑

j=0

rj . ()

There will be some asymmetry for odd and even i, so let us write r+odd
i for

the subsum of r+i consisting of odd terms and r+even
i for the subsum of r+i

consisting of even terms. Defining r−odd
i and r−even

i similarly, we have, of course,
r+odd
i + r+even

i = r+i and r−odd
i + r−even

i = r−i .

odd and ≤ j−1
j−1

j even

odd even and ≥ j−1
j−1

j odd

Fig. 4.3. Children of nodes with even and odd peel numbers.

Clearly, r0 = p0. For even indices j, all children must have an odd peel number
at most j − 1 and at least one must have peel number j − 1. Thus, if ξ is the
number of children at the root, then for i ≥ 1,

r2i = E
{(

r−odd
2i−1

)ξ −
(

r−odd
2i−3

)ξ}
= f

(

r−odd
2i−1 )− f

(

r−odd
2i−3

)

. ()
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For odd indices j, all the children of the root with even peel number must have
peel number at least j − 1, and at least one must have peel number j − 1. Since

∑

i≥0

r2i−1 = 1− q and
∑

i≥0

r2i = q, ()

we find that for i ≥ 1,

r2i−1 = E
{(

1− q + r+even
2i−2

)ξ −
(

1− q + r+even
2i

)ξ}
. ()

The following lemma describes ri for large i.

Lemma 4.5. Let ri be the probability that the root of an unconditional Galton–
Watson tree with offspring distribution ξ ∼ (pi)i≥0 has peel number equal to i.
As i→∞, we have

ri = f ′(1− q)i+o(i). ()

Proof. In the even case, we have

r2i = f
(

r−odd
2i−1

)

− f
(

r−odd
2i−3

)

∼ r2i−1

∑

j≥0

jpj
(

r−odd
2i−3

)j−1

= r2i−1f
′
(

r−odd
2i−3

)

,

()

which, since r−odd
2i−3 → 1− q, is asymptotic to r2i−1f

′(1− q). Similarly, we have

r2i−1 = f
(

r+even
2i−2 + 1− q

)

− f
(

r+even
2i + 1− q

)

∼ r2i−2

∑

j≥0

jpj(1− q)j−1, ()

which is also asymptotic to r2i−2f
′(1− q).

If Ni is the number of nodes in the ith layer for our algorithm, then Aldous’s
theorem (Theorem 1.4) implies that for every fixed i,

Ni

n
→ ri ()

in probability. The number of nodes in the layers decreases at the indicated rate,
namely f ′(1− q). As q ∈ (1/2, 1), we have

p1 = f ′(0) < f ′(1− q) < f ′

(

1

2

)

≤ E

{

1

2ξ

}

. ()

The next section will need the event that the maximum peel number in an
unconditional tree occurs at the root. We have the following lemma.
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Lemma 4.6. Let T be an unconditional Galton–Watson tree with offspring
distribution ξ. Let R be the peel number of the root of such a tree and let M
be the maximum peel number of any node in the tree. Let q be the solution to
q = f(1−q), where f is the reproduction generating function of this distribution.
Then

τi := P{R = M = i} = f ′(1− q)i+o(i) ()

as i→∞.

Proof. The fact that τi ≤ P{R = i} = ri = f ′(1 − q)i+o(i) means that we
only have to worry about finding a lower bound. To that end, consider the ξ
children of the root (each the root of unconditional Galton–Watson trees), with
peel numbers R1, . . . , Rξ and maximum peel numbers M1, . . . ,Mξ. We consider
the odd and even cases separately.

When i is odd, the event that R = M = i is implied by the event that there
exists some 1 ≤ j ≤ ξ with Rj = Mj = i − 1 and for all k 6= j, we have Rj

odd and Mj ≤ i. Therefore, when i is odd, we have, by the inclusion-exclusion
inequality,

τi ≥ E
{

ξ · τi−1 P{R odd, M ≤ i}ξ−1
}

−E

{(

ξ

2

)

· τi−1
2 P{R odd, M ≤ i}ξ−2

}

.

()
Note that P{R odd, M > i} = o(1) as i→∞, and so

τi ≥ E
{

ξ · τi−1

(

1− q − o(1)
)ξ−1}−E

{(

ξ

2

)

· τi−1
2
(

1− q − o(1)
)ξ−2

}

= τi−1f
′
(

1− q − o(1)
)

− τi−1
2

2
f ′′(1− q)

≥ τi−1f
′
(

1− q − o(1)
)

− τi−1
2σ2

2
.

()

When i is even, the event that R = M = i is a subset of the event that there
exists some 1 ≤ j ≤ ξ with Rj = Mj = i− 1 and for all k 6= j, we have Rj odd,
Rj ≤ i − 2, and Mj ≤ i. With another application of the inclusion-exclusion
inequality and by a similar argument as in the odd case, we have

τi ≥ E
{

ξ · τi−1 P{R ≤ i− 2, M ≤ i, R odd
}ξ−1}

−E

{(

ξ

2

)

τi−1
2 P{R ≤ i− 2, M ≤ i, R odd}ξ−2

}

≥ τi−1f
′
(

1− q − o(1)
)

− τi−1
2σ2

2
.

()

In both the odd and even cases, we see that τi ≥ f ′(1− q)i+o(i), completing the
proof.

Using this result, we can give the following property of the distribution of
the maximum peel number.
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Lemma 4.7. The maximum peel number M in an unconditional Galton–Wat-
son tree satisfies

P{M ≥ i} = f ′(1− q)i/2+o(i), ()

as i→∞, where f is the reproduction generating function.

Proof. As before, let R1, . . . , Rξ denote the peel numbers of children of the
root and let M1, . . . ,Mξ denote the maximum peel numbers in their respective
subtrees. Let µi = P{M = i}, µ−

i = P{M ≤ i}, and µ+
i = P{M ≥ i}. The

event that M ≥ i is implied by the event

max
1≤j≤ξ

Mj ≥ i

or
max
1≤j≤ξ

Mj < i and there is some 1 ≤ j ≤ ξ with Rj = Mj = i− 1,

which we shall call B. Thus, letting Ej be the event that Rj = Mj = i− 1, we
have

P{M ≥ i} ≥ P
{

max
1≤j≤ξ

Mj ≥ i
}

+ P

{

max
1≤j≤ξ

Mj < i,

ξ
⋃

j=1

Ej

}

. ()

Note first that

P
{

max
1≤j≤ξ

Mj ≥ i
}

= 1−E
{

(1− µ+
i )ξ
}

= 1− f(1− µ+
i ). ()

By taking the Taylor series expansion of f around 1, we have

f(1− s) = f(1)− sf ′(1) +
s2

2
f ′′(θ) ()

for some 1− s ≤ θ ≤ 1, so that

f(1− s) = 1− s +
s2

2
f ′′(θ) ≤ 1− s +

s2

2
σ2 ()

and

P
{

max
1≤j≤ξ

Mj ≥ i
}

≥ µ+
i −

µ+
i

2
σ2

2
. ()

Next, by the union bound, we have

P

{

max
1≤j≤ξ

Mj < i,

ξ
⋃

j=1

Ej

}

= P

{ ξ
⋃

j=1

Ej

}

−P

{ ξ
⋃

j=1

Ej , max
1≤j≤ξ

Mj ≥ i

}

= 1−E
{

(1− τi−1)ξ
}

−E
{

ξ(ξ − 1)τi−1µ
+
i

}

= 1− f(1− τi−1)− σ2τi−1µ
+
i

≥ τi−1 −
τi−1

2σ2

2
− σ2τi−1µ

+
i .

()
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Collecting these bounds back into (), we have

µ+
i ≥ µ+

i + τi−1 −
µ+
i

2
σ2

2
− τi−1

2σ2

2
− σ2τi−1µ

+
i ()

and therefore
σ2

2
µ+
i

2 ≥ τi−1(1− σ2µ+
i )− τ2i−1σ

2

2
. ()

Let φ(x) be a decreasing function that is o(1) as x→∞. We combine () with
Lemma 4.6 to conclude that

σ2

2
µ+
i

2 ≥ τi−1

(

1− φ(i)
)

= f ′(1− q)i+o(i). ()

To bound µ+
i from above, we observe that since the event that M ≥ i is a subset

of the event B, we have

µ+
i ≤ 1− f(1− µ+

i ) + E
{

1− (1− τi−1)ξ
}

≤ µ+
i −

µ+
i

2

2

(

σ2 + o(1)
)

+ τi−1 −
τi−1

2

2

(

σ2 + o(1)
)

,
()

and therefore
σ2 + o(1)

2
µ+
i

2 ≤ τi−1 = f ′(1− q)i+o(i), ()

which is what we need.

4.5. Asymptotics of the peel number

We are now ready to prove an asymptotic result for the peel number of Tn. Our
proof uses Kesten’s tree T∞.

Theorem 4.8. Let Mn be the peel number of Tn, a conditional Galton–Watson
tree on n nodes with offspring distribution ξ satisfying E{ξ} ≤ 1 and P{ξ =
1} 6= 1. Then

Mn

logn
→ 1

log
(

1/f ′(1− q)
) ()

in probability, where f is the generating function of ξ.

Proof. For any tree t, let h(t) denote its height and recall that we use the notation
m(t) for the maximum peel number. For the lower bound, we employ Kesten’s
limit tree T∞. Let Sk denote the set of nodes of T∞ that are children of nodes
on the spine of τ(T∞, k) (i.e. nodes that are marked in the construction of T∞

up to depth k). Let

αn =

⌊ √
n

log2 n

⌋

and βn =

⌊ √
n

logn

⌋

.
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By the same result of [36] and [50] that we used before, we can find a coupling
of τ(Tn, βn) and τ(T∞, βn) such that

P
{

τ(Tn, βn) 6= τ(T∞, βn)
}

= o(1). ()

For every node u in T∞, let Tu be the subtree of T∞ rooted at u (this somewhat
conflicts with our notation Tn, but it will be clear what we mean because u is a
node and n is an integer). Let Mn = m(Tn). Letting Eux denote the event that
m(Tu) ≤ x and F denote the event that

max
u∈Sαn

h(Tu) ≥ βn − αn,

we have

P{Mn ≤ x} ≤ P
{

τ(Tn, βn) 6= τ(T∞, βn)
}

+ P
{

⋂

u∈Sαn

Eux

}

+ P{F}. ()

We already pointed out that P
{

τ(Tn, βn) 6= τ(T∞, βn)
}

= o(1); we bound the
other two terms by

P
{

⋂

u∈Sαn

Eux

}

+ P{F} ≤ P

{

|Sαn | ≤
σ2αn

2

}

+ P

{

|Sαn | ≥
σ23αn

2

}

+ P
{

m(T ) ≤ x
}σ2αn/2

+
2σ2

2
αn P

{

h(T ) ≥ βn − αn

}

,

()

where T is an unconditional Galton–Watson tree. Now,

Sαn/(σ2αn)→ 1

in probability by the weak law of large numbers, as the expected number of
children of any node on the spine of T∞ is σ2 + 1. So, the first two terms of ()
tend to zero. Next, we see that

P
{

m(T ) ≤ x
}σ2αn/2

=
(

1−P
{

m(T ) > x
})σ2αn/2

≤ exp

(

−f ′(1− q)x/2+o(x)σ
2αn

2

)

,
()

which tends to zero if x = (1− ǫ) log n/ log
(

1/f ′(1− q)
)

. For the final term, we
have, by Kolmogorov’s theorem (see, e.g. [40] or [3])

3σ2αn

2
P
{

h(T ) > βn − αn

}

∼ 3σ2

2
· 2αn

σ2(βn − αn)
∼ 3αn

βn
∼ 3

logn
, ()
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αn

βn

Tn
�

u�

Fig. 4.4. The proof uses Kesten’s infinite tree T∞ for both bounds.

which goes to zero. We have shown that

P

{

Mn < (1− ǫ)
logn

log
(

1/f ′(1− q)
)

}

→ 0 ()

for all ǫ > 0.
For the upper bound we will again work with T∞, truncated to level βn, but

also require some further auxiliary definitions. Let u∗ denote the unique node
on the spine of T∞ at distance αn from the root of Tn. Let T ∗

n be the subtree
rooted at u∗ in Tn. Let S be the set of children of nodes on the spine at distance
≤ αn from the root. We then define

M ′
n = max

u∈S
ρ(u) and M ′′

n = max
u∈S

m(Tu).

Next, we let S∗ denote the set of nodes u on the spine with the property that
all of u’s non-spine children have an odd peel number. Let Yn be the maximal
number of consecutive nodes on the spine that are in S∗. Lastly, we let Y ∗

n denote
the number of consecutive nodes going down the spine, starting at the parent
of u∗, whose non-spine children all have an odd peel number. Assuming that
τ(Tn, βn) = τ(T∞, βn), we have the inequality

Mn ≤ max
(

m(T ∗
n), ρ(u∗) + Y ∗

n ,M
′
n + Yn,M

′′
n

)

≤ max
(

m(T ∗
n) + Y ∗

n , 2M
′
n, 2Yn,M

′′
n

)

.
()

To explain this, we note that nodes in S∗ have a peel number that is one more
than the peel numbers of their children on the spine. Nodes on the spine that
are not in S∗ have a peel number that is at most one more than the maximum
peel number of any of their non-spine children (and this is bounded from above
by M ′

n).
Let ǫ > 0 be given and let x = (1 + ǫ) log n/ log

(

1/f ′(1− q)
)

. We have
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P
{

m(Tn) ≥ x
}

≤ P
{

τ(Tn, βn) 6= τ(T∞, βn)
}

+ P
{

max
u∈S

h(Tu) ≥ βn − αn

}

+ P
{

Y ∗
n ≥

√

logn
}

+ P{Yn ≥ x/2}+ P{M ′
n ≥ x/2}

+ P{M ′′
n ≥ x}+ P

{

m(T ∗
n) ≥ x−

√

logn
}

.

()
As noted in our proof of the lower bound, the first two terms are o(1), so we
have reduced our task to showing that the latter five terms are also o(1).

Let ζ be the offspring distribution of nodes on the spine (recall that P{ζ =
i} = ipi). For a node on the spine, the probability that it is in S∗ is

E
{

(1− q)ζ−1} =
∑

i≥0

ipi(1− q)i−1 = f ′(1− q). ()

Thus, Y ∗
n is a geometric random variable with parameter 1−f ′(1−q), and hence

P
{

Y ∗
n ≥

√

log n
}

= o(1). ()

Also, Yn is bounded from above in distribution by the maximum of αn indepen-
dent Geometric

(

f ′(1− q)
)

random variables, so that

P{Yn ≥ x/2} ≤ αnf
′(1− q)x/2 = o(1). ()

Next,

P{M ′
n ≥ x/2} ≤ E

{

|S|
}

P{R ≥ x/2} = σ2αnf
′(1− q)x/2+o(x) = o(1) ()

and

P{M ′′
n ≥ x} ≤ E

{

|S|
}

P{M ≥ x} = σ2αnf
′(1− q)x/2+o(x) = o(1). ()

This leaves us with the final term of (). Observe that |T ∗
n | = n−αn−

∑

u∈S |Tu|,
which is at most n−maxu∈S |Tu|. Thus,

P

{

|T ∗
n | ≥ n− n

log5 n

}

≤ P

{

max
u∈S
|Tu| ≤

n

log5 n

}

= E

{

P

{

|T | ≤ n

log5 n

}|S|
}

≤ P

{

|S| ≤ σ2αn

2

}

+

(

1−P

{

|T | > n

log5 n

})σ2αn/2

.

()
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Since, as noted earlier, |S|/(σ2αn) → 1 in probability and since P
{

|T | ≥ n
}

=
Θ(1/

√
n), we have

P

{

|T ∗
n | ≥ n− n

log5 n

}

≤ o(1) + exp

(

−Θ

(

log5/2 n√
n

)

σ2

2
αn

)

≤ o(1) + exp

(

−Θ
(

√

log n
)

)

,

()

which is o(1). So

P
{

m(T ∗
n) ≥ x−

√

log n
}

≤ max
1≤k≤n−n/ log5 n

P
{

m(T ∗
n) ≥ x−

√

log n
∣

∣

∣
|T ∗

n | = k
}

+ P

{

|T ∗
n | ≥ n− n

log5 n

}

.

()

Noting that given |T ∗
n | = k, T ∗

n is again a conditional Galton–Watson tree, and
letting Fk be the event that there exists a node v ∈ Tn with |Tv| ≤ k and
m(Tv) ≥ x−√log n, we see that

P
{

m(T ∗
n) ≥ x−

√

log n
∣

∣

∣
|T ∗

n | = k
}

≤ P
{

Fn−n/ log5 n

}

. ()

Now for v ∈ Tn define t(v) to be the subtree of v in the shifted preorder degree
sequence ξv, ξv+1, . . . , ξn, ξ1, . . . ξv−1. Let ρ(v) be the peel number of the root v
of t(v) and let Gvx denote the event that ρ(v) ≥ x−√logn and |t(v)| ≤ n/ log5 n.
We have

P{Mn ≥ x} ≤ P
{

⋃

v∈Tn

Gvx

}

+ o(1). ()

Note that maxv∈Tn;|t(v)|≤n/ log5 n ρ(v), is invariant under the cyclic shift of the
preorder degree sequence. This rotational invariance, by the cycle lemma, shows
that

P
{

⋃

v∈Tn

Gvx

}

=
P
{
⋃

v∈Tn
Gvx,

∑

1≤i≤n(ξi − 1) = −1
}

P
{
∑

1≤i≤n(ξi − 1) = −1
} , ()

where on the right-hand side, all probabilities are with respect to an i.i.d. se-
quence ξ1, . . . , ξn. We bound () from above by

P
{

⋃

v∈Tn

Gvx

}

≤ n ·
P
{

ρ(1) ≥ x−√log n, |t(1)| ≤ n/ log5 n,
∑n

i=1 ξi = n− 1
}

P
{
∑n

i=1 ξi = n− 1
} .

()
By conditioning on the size of t(1), we obtain the further bound

P
{

⋃

v∈Tn

Gvx

}

≤ n ·P
{

ρ(1) ≥ x−
√

log n
}

·
supn/ log5 n≤k≤n P

{
∑k

i=1 ξi = k
}

P
{
∑n

i=1 ξi = n− 1
} .
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By Kolchin’s estimate, the fraction is Θ(1), therefore,

P
{

⋃

v∈Tn

Gvx

}

≤ nf ′(1− q)x+o(x),

which goes to 0 if x = (1 + ǫ) log n/ log
(

1− f ′(1− q)
)

.

If, instead of removing leaves and parents at each step, we only remove
leaves, then it is clear that the number of rounds needed to delete all nodes is
simply the height of the tree. The height of random binary trees was studied
by P. Flajolet and A. Odlyzko, who showed that in this case, Hn/

√
n converges

in law to a theta distribution [23]. Earlier, it was shown by N. G. de Bruijn,
D. E. Knuth, and S. O. Rice that the expected height of a random planted plane
tree is

√
πn + O(1). It is interesting that deleting only leaves from Tn at each

step requires Θ
(√

n
)

rounds of deletion, but deleting leaves and their parents
causes the number of rounds to decrease to Θ(log n).

Examples. We apply Theorem 4.8 to calculate explicit asymptotics of the max-
imum peel number for the various families of trees mentioned in Chapter 1.

i) Flajolet’s t-ary trees: We have f ′(1 − q) = 1 − q and thus Mn/ log n →
1/ log(1/(1 − q)) in probability. As t gets large, q approaches 1 − 1/t, so
that the limit of Mn/ log n is approximately 1/ log t for large t. For the
case of full binary trees when t = 2, recall that q = 2 −

√
2 and thus

Mn/ log n→ −1/ log(
√

2− 1) in probability.

ii) Cayley trees: In this case, f ′(1 − q) = e−q and hence Mn/ log n → 1/q in
probability; we know from earlier that q = W (1), so 1/q ≈ 1.763223.

iii) Planted plane trees: We calculate f ′(1 − q) = 1/(q + 1)2. Recalling that
q = 1/ϕ where ϕ = (

√
5 − 1)/2 is the golden ratio, we have in probability

Mn/ log n→ 1/ϕ2 ≈ 0.381966.

iv) Motzkin trees: The derivative f ′(1 − q) = (3 − 2q)/3 and substituting q =
3−
√

6 we get Mn/ logn→ 1/(log 3− log(2
√

6− 3)) ≈ 2.186769.

v) Binomial trees: In this case, we have f ′(1−q) = (1−q/d)d−1. As d→∞, it
is clear to see that Mn/ log n→ 1/W (1) in probability, matching the earlier
calculation for Cayley trees above. For the special case d = 2 of Catalan
trees, we have f ′(1−q) = 1−q/2 and thus Mn/ logn→ −1/ log(

√
3−1). This

constant is greater than that we obtain for full binary trees above, which is
consistent with intuitive reasoning about the maximal peel numbers of these
trees.

4.6. Distribution of the leaf height

We now repeat the treatment given in Section 3, but this time for the distribution
(ℓi)i≥0, where for each i ≥ 0, ℓi denotes the probability that the root of an
unconditional Galton–Watson tree has leaf height equal to i. Observe that ℓ0



62 THE INDEPENDENCE NUMBER 4.6

is exactly the probability p0 that the root has no children and in general, for a
node u with children Γu the leaf height λ(u) is

λ(u) =

{

0, if u is a leaf;
minv∈Γu λ(v) + 1, otherwise.

()

We define ℓ+i and ℓ−i analogously to r+i and r−i :

ℓ+i =
∑

j≥i

ℓj and ℓ−i =
i
∑

j=0

ℓj ; ()

since (ℓi)i≥0 defines a distribution, ℓ+i+1 + ℓ−i = 1 for every i ≥ 0. Letting Ei be
the event that all the children of the root have leaf height at least i, we have, for
i ≥ 1, ℓi = P{Ei−1} −P{Ei}. We can then compute

ℓ1 = 1−E
{

(1− ℓ0)ξ
}

= 1− f(1− ℓ0) = 1− f(1− p0). ()

and, in general, for i ≥ 1,

ℓi+1 = P{Ei} −P{Ei+1}
= E

{

(ℓ+i )ξ
}

−E
{

(ℓ+i+1)ξ
}

= f(ℓ+i )− f(ℓ+i+1)

= f(1− ℓ−i−1)− f(1− ℓ−i ).

()

By convexity of f , we see that ℓi is nonincreasing, and this formula provides a
fast method to compute the ℓi recursively. The following lemma describes the
behaviour of ℓi as i gets large.

Lemma 4.9. Let T be a Galton–Watson tree with offspring distribution ξ ∼
(pi)i≥0. If p1 6= 0, then ℓi = (p1 + o(1))i. Otherwise if p1 = 0 and κ = min{i >
1 : pi 6= 0}, then

log ℓi = Θ(κi) ()

as i→∞.

Proof. The recursive formula above is our starting point. Expanding f as a
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power series, for i ≥ 1 we have, by our choice of κ,

ℓi+1 =
∞
∑

j=0

pj
(

(ℓ+i )j − (ℓ+i+1)j
)

= 0 + p1(ℓ+i − ℓ+i+1) +
∑

j≥κ

pj
(

(ℓ+i )j − (ℓ+i+1)j
)

= p1ℓi + pκℓi
(

(ℓ+i )κ−1 + (ℓ+i )κ−2(ℓ+i+1)1 + . . . + (ℓ+i+1)κ−1
)

+
∑

j>κ

pj
(

(ℓ+i )j − (ℓ+i+1)j
)

.

≤ p1ℓi + κpκℓi(ℓ
+
i )κ−1 +

∑

j>κ

jpjℓi(ℓ
+
i )j−1

≤ p1ℓi + ℓi(ℓ
+
1 )κ−1

(

∑

j≥κ

jpj

)

= p1ℓi + ℓi(1− p0)κ−1(1− p1).

()

Letting α = p1 + (1−p1)(1−p0)κ−1 < 1, we have ℓi+1 ≤ ℓiα. Hence ℓi+1 ≤ ℓ1α
i

and therefore ℓi → 0 as i→∞.
Let ǫ > 0 and pick nǫ large enough such that ℓ+i ≤ ǫ for all i ≥ nǫ. When

p1 6= 0, we have ℓip1 ≤ ℓi+1 ≤ ℓi(p1 + ǫκ−1), so we immediately conclude that

ℓi =
(

p1 + o(1)
)i

. If p1 = 0, then

ℓi+1 ≤ κpκℓi(ℓ
+
i )κ−1 +

∑

j>κ

jpjℓi(ℓ
+
i )κ−1(ℓ+i )j−κ

≤ κpκℓi(ℓ
+
i )κ−1

(

1 +
∑

j>κ

jpjǫ
j−κ
)

≤ κpκℓi(ℓ
+
i )κ−1

(

1 +
ǫ

1− ǫ

)

≤ κpκℓi(ℓi)
κ−1
(

∞
∑

j=0

αj
)κ−1

(

1

1− ǫ

)

=
κpκ

(1− α)κ−1(1− ǫ)
ℓi

κ.

()

From this and the fact that ℓi → 0, we see that for some positive constants c1,
c2 < 1, and c3,

ℓi ≤ c1c2
κi−c3

()

for all i ≥ c3. We also have

ℓi+1 ≥ κpκℓi(ℓ
+
i )κ−1 ≥ κpκℓi

k, ()

so that for some positive constants c′1, c′2 < 1, and c′3,

ℓi ≥ c′1c
′
2
κ
i−c′

3

()
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for all i ≥ c′3. This proves that log ℓi = Θ(κi). We finish the proof by noting
that ℓ+i can be bounded in a similar manner.

4.7. Asymptotics of the leaf height

In this section, we will describe the asymptotic behaviour of the leaf height of a
tree Tn (recall that this is the maximum of λ(v), taken over all the nodes v ∈ Tn).
The result depends on whether p1 is zero or nonzero, and we have split this into
two statements, since the proofs of each are rather involved.

Theorem 4.10. Let Ln be the leaf height of Tn, a conditional Galton–Watson
tree on n nodes with offspring distribution ξ ∼ (pi)i≥0. If p1 6= 0, then

Ln

log n
→ 1

log(1/p1)
()

in probability.

Proof. Let Yn be the length of the longest string, oriented away from the root,
of nodes of degree one in Tn. Clearly Ln ≥ Yn, so we will first show that for
ǫ > 0,

P
{

Yn < (1− ǫ) log n/ log(1/p1)
}

→ 0.

Now, P{Yn < x} is the probability that a string of 1s appears in the preorder
degree sequence of the tree (ξ1, ξ2, . . . , ξn), given that the sequence is of length
n and that the sequence does, in fact, define a tree; as we have used previously,
this latter probability is Θ(n−3/2), from Dwass [21]. So letting Yn(ξ1, ξ2, . . . , ξn)
be the length of the longest subsequence of 1s in the preorder degree sequence,
we have

P{Yn < x} = Θ(n−3/2)P
{

Yn(ξ1, ξ2, . . . , ξn) < x
}

. ()

We divide the sequence into n/x subsequences of length x each and let Ei be the
event that the ith subsequence does not consist only of 1s. Then

P
{

Yn(ξ1, ξ2, . . . , ξn) < x
}

= P

{n/2
⋃

i=1

Ei

}

= P{Ei}n/2. ()

Since P{Ei} = 1− p1
x for all i,

P
{

Yn(ξ1, ξ2, . . . , ξn) < x
}

= (1− p1
x)n/x ≤ exp

(

−np1
x

x

)

. ()

When x = (1− ǫ) log n/ log(1/p1), this is equal to exp(−nǫ/x), so

P
{

Ln < (1− ǫ) log n/ log(1/p1)
}

≤ P
{

Yn < (1− ǫ) log n/ log(1/p1)
}

≤ Θ(n3/2)e−Θ(nǫ/ logn),
()
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which goes to 0 as n→∞.

To tackle the upper bound, it will be helpful for us to reorder the degrees into
level (also called breadth-first) ordering and to consider the following random
variable. Arrange the level-order degree sequence ξ1, ξ2, . . . , ξn in a cycle, and let
Zn be the longest string of consecutive non-zero numbers in this cyclic ordering.
Clearly the probability that no sub-cycle of length x of this ordering consists only
of zeroes is at most n(1 − p0)x. So letting A be the event that (ξ1, ξ2, . . . , ξn)
defines a tree, we can crudely bound P{Zn ≥ x} by

P{Zn ≥ x} =
P{Zn ≥ x, A}

P{A} ≤ Θ(n3/2)n(1− p0)x = Θ(n5/2)(1− p0)x, ()

which goes to zero if c > (5/2)/ log
(

1/(1 − p0)
)

and x is set to c log n. By
symmetry, if Zn is the longest string of nonzeroes in the preorder listing, then
the same result holds, that is,

P

{

Zn ≥
3 logn

log
(

1/(1− p0)
)

}

→ 0. ()

Note that Ln ≤ Zn. Now for 1 ≤ ∆ ≤ n let Ln(ξ1, ξ2, . . . , ξ∆) be the smallest
leaf height if we start constructing a tree using degrees ξ1, ξ2, . . . , ξ∆, in preorder.
Two situations can occur: either ξ1, ξ2, . . . , ξ∆ defines at least one tree in a
possible forest, or ξ1, ξ2, . . . , ξ∆ defines an incomplete tree. In the former case,
Ln(ξ1, ξ2, . . . , ξ∆) is the leaf height of the first completed tree; in the latter, set
Ln(ξ1, ξ2, . . . , ξ∆) = 0. Note that if Zn ≤ ∆, then Ln(ξ1, ξ2, . . . , ξ∆) ≤ ∆. For a
sequence ξ1, ξ2, . . . , ξn of degrees, we define

Lni = Ln(ξi, ξi+1 . . . , ξi+∆−1), ()

where addition in the indices is taken modulo n. If Zn ≤ ∆, note that Ln ≤
max1≤i≤n Lni. So we have

P{Ln > x} ≤ P{Ln > x, Zn ≤ ∆}+ P{Zn > ∆}
≤ P

{

max
1≤i≤n

Lni > x, Zn ≤ ∆
}

+ P{Zn > ∆}

≤ P
{

max
1≤i≤n

Lni > x
}

+ P{Zn > ∆}.
()

The second term is o(1) if we pick c > (5/2)/ log
(

1/(1 − p0)
)

as before and set
∆ = c log n. In the first term, the maximum is invariant under rotations of
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(ξ1, ξ2, . . . , ξn), so we use may employ the cycle lemma to obtain

P
{

max
1≤i≤n

Lni > x
}

=
P
{

max1≤i≤n Lni > x,
∑n

i=1 ξi = n− 1
}

P
{
∑n

i=1 ξi = n− 1
}

≤
P
{

max1≤i≤n Lni > x,
∑n

i=∆+1 ξi = n− 1−∑∆
i=1 ξi

}

Θ(n−1/2)

≤ O(n3/2) sup
ℓ

P

{

Ln1 > x,

n
∑

i=∆+1

ξi = ℓ

}

= O(n3/2) ·P{Ln1 > x} · sup
ℓ

P

{ n
∑

i=∆+1

ξi = ℓ

}

.

()
Rogozin’s inequality tells us that

sup
ℓ

P

{

n
∑

i=∆+1

ξi = ℓ

}

≤ γ√
1−Π

· 1√
n−∆

, ()

where γ is a universal constant and Π = supj pj . So if L(T ) is the leaf height of
the root of an unconditional Galton–Watson tree, then

P{Ln > x} ≤ O(n)P{Ln1 > x}
≤ O(n)P{L(T ) > x}
≤ O(n)ℓ+x

≤ O(n)
(

p1 + o(1)
)x
,

()

which goes to 0 when x = (1 + ǫ) log n/ log(1/p1).

The next theorem handles the other case, in which p1 is zero.

Theorem 4.11. Let Ln be the leaf height of Tn, a conditional Galton–Watson
tree on n nodes with offspring distribution ξ ∼ (pi)i≥0. Let κ = min{i > 1 : pi 6=
0}. If p1 = 0, then

Ln

log log n
→ 1

log κ
()

in probability.

Proof. Let ǫ > 0, let A be the event that (ξ1, ξ2, . . . , ξn) forms a tree and let
Ln(ξ1, ξ2, . . . , ξn) be as in the previous lemma. If L(T ) is the leaf height of the
root of an unconditional Galton–Watson tree T , we have, by the cycle lemma,

P{Ln ≥ x} =
P
{

Ln(ξ1, ξ2, . . . , ξn) ≥ x, A
}

P{A}
≤ Θ(n3/2)P

{

Ln(ξ1, ξ2, . . . , ξn) ≥ x
}

≤ Θ(n3/2)nP{L(T ) ≥ x}
≤ Θ(n5/2)c1c

κx−c3

2 ,

()
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for some positive constants c1, c2 < 1, and c3. When x = (1 + ǫ) logκ log n, this

is Θ(n5/2)c
Θ((logn)1+ǫ)
2 , which goes to 0 as n→∞.

Let T∞ be Kesten’s infinite tree. Our proof of the lower bound uses the fact
that

P
{

τ(T∞, n1/3) 6= τ(Tn, n
1/3)

}

→ 0 ()

as n→∞. Let U be the set of all unconditional Galton–Watson trees T rooted
less than n1/4 of the way down the spine. Let h(T ) denote the height of an
unconditional Galton–Watson tree; the probability that one of these trees has
height greater than n1/3/2 is bounded above by

E
{

|U |
}

P
{

h(T ) > n1/3/2
}

≤ σ2n1/4

(

2 + o(1)

σ2n1/3/2

)

∼ 4

n1/12
, ()

which goes to 0. Here we used the fact that E{ζ} = σ2 + 1 and applied Kol-
mogorov’s result (see [40] and [3]) about the height of a Galton–Watson tree. If
all the heights above are at most n1/3/2, then T ∗

n , the tree obtained by taking
the spine up to level n1/4 and all hanging unconditional trees up to that point,
is a subtree of τ(T∞, n1/3), since n1/4 + n1/3/2 < n1/3.

.

.

.

Tn
∗

n1/4

n1/3

Fig. 4.5. None of the unconditional trees in T ∗

n reach level n1/3.

For every tree t ∈ H, let Et be the event that the leaf height of the root of t
is less than x and let ET be the same event for an unconditional Galton–Watson
tree (since each t in H is such a tree, there is no real moral distinction between
these events). We have

P{Ln < x} ≤ P
{

τ(T∞, n1/3) 6= τ(Tn, n
1/3)

}

+ P
{

T ∗
n 6= τ(Tn, n

1/3)
}

+ P
{

⋂

t∈H

Et

}
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≤ o(1) + E
{

P{ET }|H|
}

()

≤ o(1) + E
{(

1− c′1 · c′κ
x−c′

3

2

)|H|}

≤ o(1) + E
{(

1− c′1 · c′κ
x−c′

3

2

)n1/4σ2/2}
+ P

{

|H| < n1/4σ2

2

}

,

for some c′1, c
′
2, c

′
3 positive, c′2 < 1. Take x = (1 − ǫ) logκ log n. Letting the

random variables ζ1, ζ2, . . . , ζn be independent and distributed as ζ, we find that

P{Ln < x} ≤ o(1) + exp
(

−Θ(n1/4e−Θ((logn)1−ǫ))
)

+ P

{n1/4
∑

i=1

(ζi − 1) <
n1/4σ2

2

}

.

()
Since E{ζ − 1} = σ2, by the weak law of large numbers, this entire expression is
o(1).

It is important to note that the node with maximum leaf height in a tree is
not usually the root. We have the following result for the distribution of the leaf
height of the root of a conditional Galton–Watson tree Tn.

Lemma 4.12. Let L′
n denote the leaf height of the root of Tn, a conditional

Galton–Watson tree of size n and offspring distribution ξ. Let f be the generating
function of this distribution. Then the probability distribution of L′

n is given by

lim
n→∞

P{L′
n = i} =

i−1
∏

j=0

f ′(ℓ+j ). ()

Proof. For a node v on the spine of Kesten’s infinite tree T∞, let H∗ be the leaf
height of the spine-child of v, and H(1), H(2), . . . , H(ζ−1) be the leaf heights of
the ζ − 1 independent unconditional Galton–Watson trees spawned by v. Then
the leaf height of a node v on the spine is

1 + min
w∈Γv

λ(w) = 1 + min
(

H(1), H(2), . . . , H(ζ − 1)
)

. ()

This defines a Markov chain on the positive integers that proceeds up the spine.
The state H∗ (which is just a positive integer indicating the leaf height of the
node on the spine), is taken to the state

1 + min
(

H∗, H(1), H(2), . . . , H(ζ − 1)
)

()

in one step of the Markov chain; here all Hi have distribution (ℓi)i≥0. Let H∗∗ be
the limit stationary random variable of this Markov chain. That the limit exists
and that the chain is positive recurrent follows from the fact that at each step,
there is a positive probability that the next state is 1. This happens when ζ > 1
and one of H(i) is 0. In fact, H∗∗ is the unique solution of the distributional
identity

H∗∗ L
= 1 + min

(

H∗∗, H(1), H(2), . . . , H(ζ − 1)). ()



4.7 ASYMPTOTICS OF THE LEAF HEIGHT 69

N. Broutin, L. Devroye, and N. Fraiman showed that under a coalescence con-
dition (satisfied here), the limit of the root value of Tn tends in distribution
to the stationary random variable for Kesten’s spinal Markov chain [12]. Thus
L′
n → H∗∗ in distribution.

We can describe the distribution of H∗∗ more explicitly. For convenience,
let ℓ∗∗i = P{H∗∗ = i}. For i ≥ 1,

ℓ∗∗i = P{Hj ≥ i + 1 for all 1 ≤ j ≤ ζ − 1}P{H∗∗ ≥ i− 1}. ()

This means that

ℓ∗∗i = ℓ∗∗i−1 E
{

(ℓ+i−1)ζ−1
}

= ℓ∗∗i−1

∑

j≥1

jpj(ℓ
+
i−1)j−1, ()

and we can rewrite this in terms of the generating function f(s) of ξ as

ℓ∗∗i = ℓ∗∗i−1f
′(ℓ+i−1) = ℓ∗∗0

i−1
∏

j=0

f ′(ℓ+j ) =

i−1
∏

j=0

f ′(ℓ+j ), ()

proving the lemma.

Lastly, we can obtain a random variable by taking the leaf height of a node
chosen uniformly at random from Tn. Its distribution is asymptotically the same
as the leaf height of the root of an unconditional Galton–Watson tree.

Lemma 4.13. Let L′′
n be a random variable obtained by taking the leaf height

of a node chosen uniformly at random from a conditional Galton–Watson tree
Tn. We have

lim
n→∞

P{L′′
n = i} = ℓi ()

for all i ≥ 0.

Proof. By Aldous’s theorem, if T ∗
n denotes the subtree of Tn rooted at a uniformly

selected random node, then for all trees t,

lim
n→∞

P{T ∗
n = t} = P{T = t}, ()

where T is the unconditional Galton–Watson tree. The result is immediate.

Examples. We now apply Theorems 4.10 and 4.11 to compute the maximum
leaf height (asymptotically in probability) for common families of trees. These
results, along with the independence numbers and maximum peel numbers we
computed earlier, are collected in Table 3. In the table, W denotes the Lambert
function and ϕ = (

√
5− 1)/2 is the golden ratio.

i) Flajolet’s t-ary trees: For t ≥ 2, we have p1 = 0 here and κ = t, so we have
Ln/ log log n→ 1/ log t in probability, by Theorem 4.11.
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Table 3

ASYMPTOTIC VALUES OF PARAMETERS FOR CERTAIN FAMILIES OF TREES

Family In Mn Ln

Full binary

(Uniform{0, 2}) (2−
√
2)n

logn

log(1/(
√
2− 1))

log2 logn

Flajolet t-ary

(p0 = 1− 1/t; pt = 1/t)

(

1− 1 + ot→∞(1)

t

)

n ∼t→∞ logt n logt logn

Cayley

(Poisson 1))
W (1)n logn/W (1) logn

Planted plane

(Geometric(1/2))

n

ϕ

logn

ϕ2
log4 n

Motzkin

(Uniform{0, 1, 2}) (3−
√
6)n

logn

log 3− log(2
√
6− 3)

log3 n

Catalan

(Binomial(2, 1/2))
(4− 2

√
3)n

logn

log(1/(
√
3− 1))

log2 n

Binomial

(Binomial(d, 1/d))
∼d→∞ W (1)n ∼d→∞

logn

W (1)

logn

(d− 1) log(d/(d− 1))

ii) Cayley trees: In this case, p1 = 1/e, so Theorem 4.10 gives us Ln/ log n→ 1
in probability.

iii) Planted plane trees: For these trees, p1 = 1/4, so we have Ln/ log n →
1/ log 4 in probability, by Theorem 4.10.

iv) Motzkin trees: This family has p1 = 1/3 and Ln/ logn → 1/ log 3 in proba-
bility.

v) Binomial trees: For a parameter d ≥ 2, we have p1 = (1 − 1/d)d−1, which
means that  Ln/ log n→ 1/

(

(1− d) log(1− 1/d)
)

in probability. As d→∞,
the denominator approaches 1, which gives the same leaf height as the case
of Cayley trees. In the special case when d = 2, we have the Catalan trees,
for which p1 = 1/2 and Ln/ log n→ 1/ log 2 in probability.

Further directions. The definition of the peel number and our characterisa-
tion of its asymptotic growth fully describes the running time of Algorithm I,
mentioned in the introduction, which computes the layered independent set. It
would be interesting to consider the runtime of the more general Algorithm P,
described in Section 4.3. To this end, we define higher-order peel numbers as
follows. Algorithm P generates an (r+ 1)-path vertex cover by repeatedly delet-
ing subtrees with height exactly r (and marking their roots). If a node u is
deleted in the mth iteration of the loop and is at depth i of the subtree that is
deleted, then its peel number of order r (or rth order peel number) is mk − i.
Note that the loop counter m should start at 1 and we have 0 ≤ i ≤ r. By
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this definition, the peel number we studied in this chapter is simply the first
order peel number. To determine the runtime of Algorithm P, one should in
principle be able to approach the higher order peel numbers in the same way we
approached the case r = 1 in Sections 4.3 and 4.4. However, even in this case
one had to handle the even and odd cases separately, and we anticipate that the
analysis of higher-order peel numbers will require careful reasoning with respect
to congruence modulo r + 1.
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